# Future challenges and priorities for prevention

Lesley Rushton MRC-PHE Centre for Environment and Health, Imperial College London

## Imperial College London What prevention measures will work to reduce priority exposures?

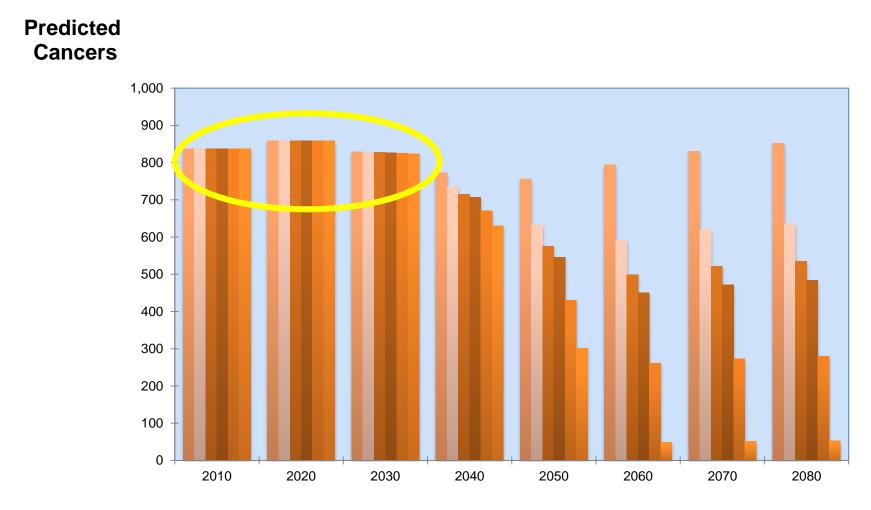
- British study showed that workplace cancers are a concern
- Current occupational cancer burden is caused by a relatively small number of agents
- Without action burden in the future will stay at 13000 new cancers annually
- Action now will avoid occupational cancers in new workers
- Focused effort could ensure the occupational cancer burden becomes much less:
  - Small and medium sized companies, self employed workers, in addition to larger companies
  - Dusts, fibres, fumes, gases through inhalation e.g. asbestos, silica, wood dust, diesel exhaust, welding fumes
  - Solar radiation encourage use of sunscreens and appropriate clothing
  - Shift (night) work

## **Predicting Future Burden: testing** effectiveness of potential interventions

- Changing balance between past and future exposure as we predict forward in time
- Baseline scenario no intervention, continuing pattern of past exposure
- Interventions can test, for example:
- Introduction exposure standards or reduction current limits
- Improved compliance to an existing exposure standard
- Different timings of introduction (2010, 2020 etc)
- Compliance levels e.g. according to workplace size (selfemployed, 1-49, 50-249, 250+ employees)

Compare predicted numbers from baseline 'no change' with interventions

## Illustration of policy options: silica and lung cancer

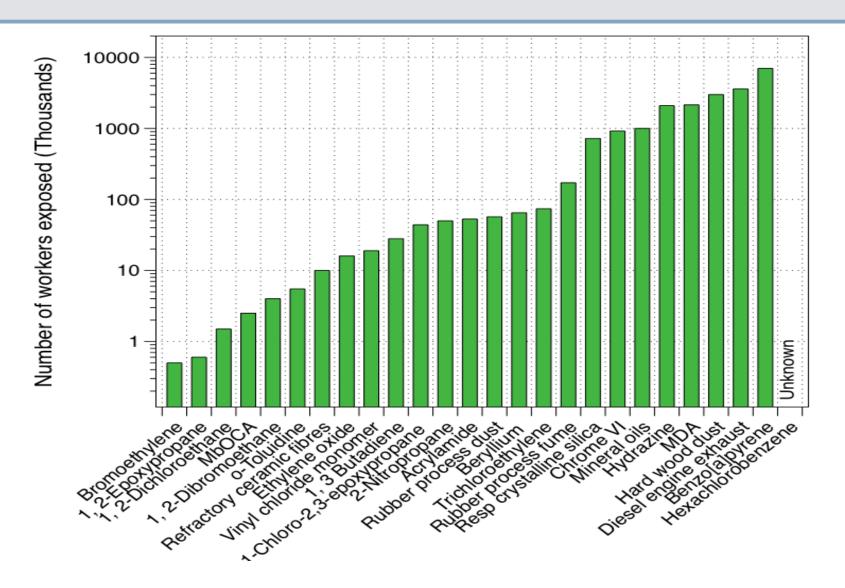

Silica: current limit 0.1 mg/m<sup>3</sup>, 33% compliance 794 newly occurring lung cancers in 2010 No action, annual numbers remains the same

- Reduce exposure limit in all workplaces to:
  >0.05 mg/m<sup>3</sup> in 2010
  >0.025 mg/m<sup>3</sup> in 2010
- Improve compliance from 33% to 90% in all workplaces
- Successively enforce a new limit, 0.05 mg/m<sup>3</sup>, and improve compliance in workplaces of different sizes

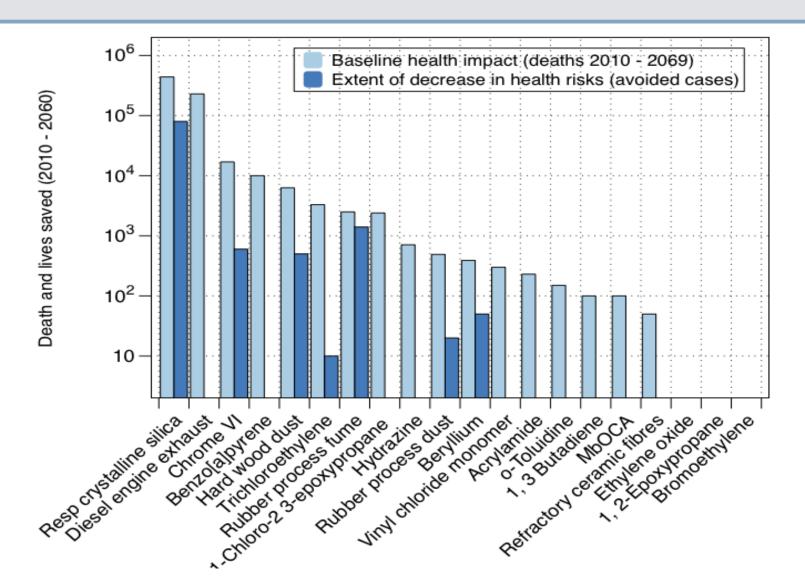
### Predicted lung cancers in 2060 from silica exposure

| Test scenarios                                              | Forecast cancers | Avoided cancers |  |  |  |  |  |
|-------------------------------------------------------------|------------------|-----------------|--|--|--|--|--|
| Base-line: Limit 0.1mg/m <sup>3</sup> , compliance 33%      | 794              |                 |  |  |  |  |  |
| Reduce exposure limit                                       |                  |                 |  |  |  |  |  |
| Exposure limit 0.05mg/m <sup>3</sup> , compliance 33%       | 592              | 202             |  |  |  |  |  |
| Exposure limit 0.025mg/m <sup>3</sup> , compliance 33%      | 409              | 385             |  |  |  |  |  |
| Reduce exposure limit AND improve compliance to 90%         |                  |                 |  |  |  |  |  |
| Exposure limit 0.1mg/m <sup>3</sup> , compliance 90%        | 102              | 693             |  |  |  |  |  |
| Exposure limit 0.05mg/m <sup>3</sup> , compliance 90%       | 49               | 745             |  |  |  |  |  |
| Exposure limit 0.025mg/m <sup>3</sup> compliance 90%        | 21               | 773             |  |  |  |  |  |
| Reduce limit to 0.05%, improve compliance by workplace size |                  |                 |  |  |  |  |  |
| 90% 250+, 33% <250, self employed                           | 499              | 295             |  |  |  |  |  |
| 90% 50+; 33% <50, self employed                             | 451              | 344             |  |  |  |  |  |
| 90% all sizes employed; 33% self employed                   | 261              | 533             |  |  |  |  |  |
| 90% all workplaces                                          | 49               | 755             |  |  |  |  |  |

#### Imperial College London Predicted lung cancers from silica exposure: Effect of improved compliance by workplace size




**Forecast Year** 


## **Extension to include cost-benefit analysis – EU Study**

- EC DG Employment funded project: to carry out a socioeconomic, health and environmental impact assessment of possible changes to the Carcinogens Directive
- 25 carcinogens: mixture of IARC Class 1, 2A, 2B
- Used the British methodology to model the effect of introduction and/or reduction of a workplace exposure limit
- Comparison of costs of predicted future cancers from these changes with costs to industry of implementation
- EU assumes 100% compliance
- Interested in whether any Member States are disproportionately disadvantaged

## Number of people exposed...



## Lives saved...



| Substance or<br>mixture           | OEL value<br>(mg/m³) | Extent of<br>decrease in<br>health risks<br>(avoided<br>cases 2010<br>to 2069) | Total<br>compliance<br>costs (€m) | Total health<br>benefits (€m) | Benefit to<br>cost ratio <sup>§</sup> |
|-----------------------------------|----------------------|--------------------------------------------------------------------------------|-----------------------------------|-------------------------------|---------------------------------------|
| Respirable crystalline silica     | 0.2                  | 80,000                                                                         | € 10,000                          | €21,000 -<br>€56,000          | 2.3 – 5.4                             |
|                                   | 0.1                  | 99,000                                                                         | € 19,000                          | €26,000 -<br>€68,000          | 1.5 – 3.5                             |
|                                   | 0.05                 | 110,000                                                                        | € 34,000                          | €28,000 -<br>€74,000          | 0.9 – 2.1                             |
| Hard wood dust                    | 3                    | 500                                                                            | €0                                | €11 - €51                     | -                                     |
|                                   | 1                    | 3,900                                                                          | €3,800 - €8,600                   | €61 - €297                    | 0.01 – 0.05                           |
| Chrome VI                         | 0.1                  | 600                                                                            | €9,000 - €37,000                  | €159 - €456                   | 0.006 –<br>0.03                       |
|                                   | 0.05                 | 1,400                                                                          | €18,000 -<br>€67,000              | €340 - €991                   | 0.007 –<br>0.03                       |
|                                   | 0.025                | 1,800                                                                          | €30,000 -<br>€115,000             | €461 - €1,327                 | 0.006 –<br>0.03                       |
| Rubber process fume               | 0.6                  | 1,400                                                                          | €470 - €3,200                     | €580 - €1,200                 | 0.25 – 1.5                            |
| Trichloroethylene                 | 273                  | 10                                                                             | €61                               | €0                            | 0                                     |
|                                   | 50                   | 580                                                                            | €428                              | €120 - €430                   | 0.3 – 1.0                             |
| Beryllium and beryllium compounds | 0.002                | 50                                                                             | €18,000 -<br>€34,000              | €11 - €30                     | 0.0004 –<br>0.001                     |
| Rubber process dust               | 6                    | 20                                                                             | €55 - €280                        | €24 - €46                     | 0.1 – 0.5                             |

## **Strength of evidence...**

- Respirable crystalline silica
- Chrome VI
- Hardwood dust
- Diesel engine exhaust
- Rubber fume
- Benzo[a]pyrene
- Trichloroethylene
- Hydrazine
- Epichlorohydrin
- O-Toluidine
- Mineral oils as used engine oil
- MDA

Strong case

A case

## A limited case

# **Challenges in burden estimation**

- Choice of diseases and risk factors: magnitude depends on which and how many included
- Latency (risk exposure period):
  Carcinogens, solid tumours 10-50 years; leukaemias 0-20 years
- Inclusion of short term workers?
- Data challenges:

➢Risk estimates: choice of studies, imprecision/HWE,

- ➢ Risk estimate study exposure levels ≠ burden population exposure
- Proportion exposed over REP: unknown for different exposure levels

## What next?

- Prediction of future burden under different policy options – build on UK FB study
- Extend to costs
- Other developments and trends:
  - ≻Effects of outsourcing
  - ➤Transient labour force
  - Migrant workforces (Singapore)
- Transfer of burden from developed to developing countries

# Thank you