Lung Cancer and Indoor Air Pollution in Xuan Wei, China: Exposure Assessment, Etiology, and Intervention

Roel Vermeulen, PhD

IRAS, Environmental Epidemiology Division Utrecht University, the Netherlands

Julius Center, Health Sciences and Primary Care University Medical Center Utrecht, The Netherlands

Indoor Air Pollution to Solid Fuels

- Half of the world's population is exposed to smoke from cooking or heating with solid fuels
- Indoor air pollution from solid fuel use → the eighth largest risk factor for global disease (2nd environmental factor)

National Household Solid Fuel Use, 2000

Xuan Wei; A special case of solid fuel exposure

Lung Cancer Mortality Rates in Xuanwei are among the Highest in China

County-specific lung cancer mortality rates (per 100,000, 1973-75)

Xuanwei

Risk estimates of lung cancer associated with household coal use

Hosgood et al., 2011

What is special about Xuan Wei?

- Type of coal?
- Type of stoves?
- Population?

Lung cancer mortality in XW

- Associated with "smoky coal"
 - Bituminous coal
 - So-called for the smoke released upon combustion
- Formed at permiantriassic boundary
 - Permian extinction event
- Smokeless coal
 - Anthracite coal

Deaths from lung cancer among individuals ages less than 70 years in Xuanwei cohort 1976-96, stratified by type of coal used, sex, and smoking habit (Baron-Adesi et.al 2012)

	Smoky Coal	Smokeless Coal
Sex and smoking status	Mortality (95% CI)*	Mortality (95% CI)*
Men		
Never smoked	450 (355 to 545)	NA
Ever smoked	488 (459 to 518)	13.1 (5.7 to 21.1)
Women		
Never smoked	527 (496 to 558)	4.7 (1.0 to 9.4)
Ever smoked	NA	NA
*Age standardised morta group of smokeless coa	ality per 100 000 person years. Th I users (n=9962) was used as the	ne age structure of the standard population.

Variation within smoky coal users

What is special about XuanWei?

X

- Type of coal
- Type of stoves?
- Population?

Primary hypotheses regarding lung cancer

- PAH hypothesis
 - Multiple recognized carcinogens
 - High personal exposure observed among smoky coal users
- Quartz hypothesis
 - Recognized carcinogen
 - Identified in coal samples
 - Personal exposure unknown
- Interaction between individual components?

Downward et al., 2014

Coal Analyses

- Coal samples collected directly from the homes of participants
- 116 smoky
 - 63 Xuanwei
 - 51 Fuyuan
- 29 smokeless
 - 7 Xuanwei
 - 22 Fuyuan

Hydrocarbon release of Coal

- Clear difference between smoky and smokeless coals
- Base differences in hydrocarbon material as would be expected when comparing bituminous to anthracite coal

Major Coal Type	N	S1 (mgHC/g coal)	S2 (mgHC/g coal)	Tmax (°C)
Smoky	116	2.2*	71. 5*	460*
Smokeless	29	0.3	8.4	581

Hydrocarbon release of Smoky Coal

County	Coal Sup-type	Coal Mine	N	S1 (mgHC/g <u>coal</u>)	S2) (mgHC/g co <u>al)</u>	Tmax (°C)
Xuanwei			65	2.35	73.24	462
	Coking Coal		63	2.34*	73.24*	462*
	-	Azhi	15	2.52	75.62	462
		Baoshan	5	2.24	61.59	463
		Laibin	14	2.23	76.14	460
		TangTang	22	1.62	61.98	464
		Yangchang	7	4.03	138.69	443
Euvuan			E 1	1 05		4521
гиуиап	Colving Cool			1.95	00.00+	452+
	Coking Coal	Daning	12	1.09	43.90	407 150 5
		Enhong	4	2.34	20.9 40.53	450.5
		Haidan	4	1.75	40.33	409.5
		Zude	1	4 21	61 02	408
		2000	-	1121	01102	17.5
	1/3 Coking		8	1.98	52.35	459*
		Bagong	5	1.7	47.19	465
		Dahe	3	3.08	80.18	445
	Gas Fat		23	1.97	131.87	433
		Housuo	20	2.03	138.44	433.5
		Qingyun	3	1.62	110.4	431
		-				
	Meagre Lean	Gumu	1	3.83	53.43	469

Quartz contents coal

- SEM reveals elevated quartz in smoky coal compared to smokeless coal
- Including quartz of size <9.6µm (respirable fraction)

Coal Type	N	Total Quartz (% of coal)	Respirable Quartz (% of coal)
Smoky	19	4.58*	1.92*
Smokeless	6	2.24	0.6

PAH exposure in air (ng/m³)

	Smoky coal		Smokeless coal		Wood			Plant				
	AM	GM	GSD	AM	GM	GSD	AM	GM	GSD	AM	GM	GSD
Smoky Coal	74.4	44.8	2.7	15.1	10.5*	2.5	66.6	58.2	1.7	95.6	83.8	1.9
Ventilated Stove	50.2	38.1	2.1	5.6	5.5	1.3	73.4	61.2	1.9	-	-	-
Unventilated Stove	224.5	160.3	2.4	13.8	9.3*	2.7	-	-	-	116.1	116.1	-
Portable Stove	41.5	31.5	2.2	19.3	14.2	2.4	78.4	70.1	1.7	39.5	39.5	-
Firepit	186.4	151.5†	2.0	-	-	-	50.2	47.7	1.4	67.3	67.3	-
Mixed Ventilation	85.7	48.9	3.1	10.6	10.6	-	-	-	-	159.5	159.5	-
Unknown	13.2	7.7	3.0	-	-	-	-	-	-	-	-	-

Universiteit Utrecht

Downward et al., Submitted

Quartz in indoor air

Fuel Type	% Detects(n)	% Non-detects(n)	Total n
Smoky Coal	14% (11)	86% (69)	80
Smokeless Coal	0% (0)	100% (17)	17
Other Coal	12% (2)	88% (15)	17
Wood	11% (1)	89% (8)	9
Plant	20% (1)	80% (4)	5
Other Fuel	10% (3)	90% (27)	30

LOD $0.2\mu g/m^3$

 Quartz in the coal ends up in the nonrespirable fraction of the ash

Universiteit Utrecht

Downward et al., submitted

Key Pathways in B(a)P Metabolism

GSTM1 Null Genotype

 GSTM1 null genotype → lack of GSTM1 enzyme activity

 Results in decreased detoxification of PAH metabolites

GSTM1 Genotype and Lung Cancer Risk

GSTM1	Case N (%)	Control N (%)	OR ^a (95%CI)
Positive	40(32.8)	62(49.2)	1.0
Null	82(67.2)	60(50.8)	2.3 (1.3-4.2)

a ORs and 95% CIs adjusted for total smoky coal use without ventilation, pack -years, COPD, and family history of lung cancer by multiple conditional logistic regression.

Universiteit Utrecht

Lan et al., 2000 CEBP

Aldo-keto Reductase Family 1, Member C3 (AKR1C3 Gln5His)

AKR1C3-GIn5His polymorphism (Exon 1)

- Produces a change from glutamine \rightarrow histidine
- A shift from a neutral to a basic amino acid

AKR1C3-GIn5His Polymorphism and Lung Cancer Risk

Genotype	Case N (%)	Controls N (%)	OR (95%CI)
His/His + His/Gln	22 (19)	33 (29)	1.0
Gln/Gln	94 (81)	79 (71)	1.8 (1.0-3.5)

Lan et al., 2004 Carcinogenesis

OGG1 (Oxoguanine glycosylase 1) Ser326Cys polymorphism

- OGG1 repairs 8-oxo-7,8-dihydroguanine (8oxoG)
- OGG1 Ser326Cys polymorphism (Exon 6)
- Repair activity of OGG1-Ser326 has been shown to be > OGG1-Cys326

OGG1 Ser326Cys Polymorphism and Lung Cancer Risk

<i>OGG1</i> Genotype	Case N (%)	Control N (%)	OR (95%CI)	
Ser/Ser	37 (31)	51 (47)	1.0	
Ser/Cys +Cys/Cys	81 (69)	58 (53)	1.9 (1.1-3.3)	

ORs and 95%CIs obtained by logistic regression analysis adjusted for age, sex, pack-year of smoking.

Universiteit Utrecht

Lan et al., 2004 Carcinogenesis

Primary hypotheses regarding lung cancer

- PAH hypothesis
 - Multiple recognized carcinogens
 - High personal exposure observed among smoky coal users
 - Gene-environment interaction with key genes in BaP metabolism
- Exposures however not high enough to explain the high excess risks?
 - Armstrong and Gibbs derived a ERC curve for BaP exposure and lung cancer among coke oven workers, which predicted a relative risk of 2.68 at 100 µg/m3 BaP years using a power risk-curve -> RR ~ 8

Universiteit Utrecht

Vermeulen, R.; Rothman, N.; Lan, Q. Coal combustion and lung cancer risk in XuanWei: a possible role of silica? Med Lav 102:362-7; 2011.

Open questions

- Causative agent: organic fraction of smoky coal
- Agent/Agent interactions?
- Timing of exposure?

Universiteit Utrecht

Age at starting cooking (years)

Engineering Interventions to Reduce Health Burden from Household Solid Fuel Use

Ventilation changes

- Chimneys on stoves
- Placement of stoves outside
- Improved home ventilation

Stoves changes

- Using existing biomass fuels, e.g., "gasifier" stoves
- Using processed biomass, e.g., pellet stoves
- Improve efficiency
- Fuel Changes

Stove improvement programs

• Stove improvement programs were implemented in the mid-eighties

Fire pit

Portable stove

Vented stoves

Reduction in IAP exposure

	Smoky coal			Sm	okeless	coal
	AM	GM	GSD	AM	GM	GSD
Smoky Coal	74.4	44.8	2.7	15.1	10.5*	2.5
Ventilated Stove	50.2	38.1	2.1	5.6	5.5	1.3
Unventilated Stove	224.5	160.3	2.4	13.8	9.3*	2.7
Portable Stove	41.5	31.5	2.2	19.3	14.2	2.4
Firepit	186.4	151.5†	2.0	-	-	-
Mixed Ventilation	85.7	48.9	3.1	10.6	10.6	-
Unknown	13.2	7.7	3.0	-	-	_

Stove Improvement and Lung Cancer in Xuanwei, China Product-limit survival plot – Probability of not having lung cancer

Initiation of a New Hospital-Based Case-Control of Lung Cancer among Nonsmoking Women (2006-2008)

- Enroll 1000 newly diagnosed non-smoking female cases and 1000 female controls
- Biological sample collection: collect blood, sputum, buccal cells
- Questionnaire collects extensive information on lifetime exposure to smoky coal and potential confounders
 Hospitals for the new case-controls study
- Detailed exposure assessment in 140 households (36 villages)
 - Personal
 - Stationary

Collaborators

China CDC: Xingzhou He

China EPA: Fusheng Wei

U.S. EPA: Robert Chapman, Judy Mumford

<u>University of Utrecht:</u> Boris Reiss, Kees Meliefste, George Downward

UC Berkeley: Kathy Hammond

Chinese University of Hong Kong: Linwei Tian

<u>U.S. NCI:</u> Qing Lan, Min Shen, Nat Rothman, Neil Caporaso, Aaron Blair, Jay Lubin, Michael Alavanja, Stephen Chanock

