Design challenges associated with ascertaining exposures and contaminant levels among recent newcomer women

Dr. Donald Cole, Dolon Chakravartty, Dr. Clare Wiseman (UToronto), Josephine Archbold (Toronto PH) & Dr. Ray Copes (PHO)

February 13, 2014

Newcomers & Environmental Exposures (i)

- Higher contaminant exposures in countries of origin
- e.g.
 - Organochlorine compounds used in vector control & agriculture
 - Lead exposures have been found to be particularly high in lowand middle income countries, including India (Blacksmith Institute, 2012)
- Consumption of foods or use of products from countries of origin e.g.
 - higher mercury levels in fish cases in Ontario
 - metal levels in skin whitening products

Newcomers & Environmental Exposures (ii)

- Consumption of Canadian foods with higher contaminant levels e.g. sportfish (Cole et al 2004)
- Occupational and other sources of exposure in Canada as per environmental justice critiques.
 - Higher proportion of immigrant and minority women employed in higher risk occupations, resulting in increased exposures and health related disparities. (Premji et al, 2010)
 - Possibilities of environmental injustice among immigrant communities that have not been examined

Scoping Review

(Chakravartty et al, in revision)

- Aim to determine the extent, range and nature of studies on differential environmental exposures among Canadians as a function of sex and gender and race and ethnicity.
- Synthesis among 65 included articles
 - 18% conducted subgroup analysis by race/ethnicity
 - 6% provided reasons for observed differences in exposure or outcome by race/ethnicity.
 - 3% articles analyzed elevated exposure by sex/gender <u>and</u> race/ethnicity

Recent Biomonitoring data

- Surveillance
 - Canadian Health Measures Survey (Cycle 1, 2007-2009; Cycle 2, 2009-2011) <u>http://www.hc-sc.gc.ca/ewh-</u> <u>semt/pubs/contaminants/chms-ecms/index-eng.php</u>

Cohort

 MIREC (Maternal-Infant Research on Environmental Contaminants) women recruited during pregnancy, 19% born outside of Canada, results pending <u>http://www.mirec-canada.ca/</u>

CHMS (Cycle 1, 2007-2009) Lye et al, 2013

In modeling Least Squares Geometric Mean (LSGM, 95% CI) total blood mercury (μ g/L)* among participants aged 6 to 79 Years, significant were:

Canadian citizenship/place of birth (p=0.0015)

- Born in Canada/Canadian citizen at birth (ref adjusted*) 0.62 (0.52-0.72)
- Not born in Canada or non-Canadian citizen at birth 1.09 (0.75-1.58)

Cultural/racial background (p=0.0274)

- Caucasian (ref adjusted*) 0.62(0.54-0.72)
- Asian 1.41 (0.6-3.3)
- Other or multiracial 1.14 (0.86-1.51)

*Contributing co-variates were smoking status, alcohol consumption, education, income, fish & shellfish consumption, and amalgam count

Policy-Maker & Practitioner Interest

- Policy makers and public health practitioners at all levels of government are concerned that...
- the higher concentrations of contaminants observed in population studies may be among...
- vulnerable newcomer groups.
- Hence desire for additional data, particularly among women, to answer the question:
 - Are newcomer women more likely to report exposures and have higher contaminant levels in their tissues than those born in Canada or long-term resident in Canada?

What is an appropriate study design?

Surveillance? Cross-sectional survey? Above with interventions? Qualitative component?

Population focus - life stage

- All ages, particularly elderly with lifetime accumulation e.g. lead, cadmium increase with age, given long half life and higher past exposures
- Childbearing age, as women mobilize contaminants during pregnancy and breastfeeding - could affect their and their children's health
- During early pregnancy -potential opportunity to counsel women re practices and reduce exposures

Population focus - countries of origin

- By those with the highest potential exposures from international literature?
- Entire regions e.g. South East and South Asians?
 Or specific countries e.g. India, Bangladesh, Vietnam...
- Entire countries or provinces/states/areas within countries? E.g. coastal areas given fish consumption
- Based on prevalence of practices which might increase exposures e.g. use of skin whiteners?

Population focus - recency of arrival

- All non-Canadian born (as per many studies to date)?
- Relative interest in current (could be modified in Canada) versus past (hard to change) exposures.
- Within the last decade a commonly used time period for immigrant health studies, wearing off of "healthy immigrant" effects?
- Within the last five years more commonly used for refugees, though some argue for even more recent e.g. 1-2 years?
- Take into account exposure reduction in source countries? e.g. "Mean blood-lead levels of children from [Indian] urban centres have fallen from 18.1 µg/dl in the leaded petrol phase to 12.1 µg/dl in the unleaded petrol phase [2000+]" (Singh & Singh 2006)

Recruitment approaches

Community organizations

- Country of origin/language/ethnicity e.g. South Asian
- Environmental

Public health programs

- Nutrition, pre-natal, other?
- Clinical services
 - Primary care family health teams, community health centres, private providers
 - Speciality care e.g. obstetricians, midwives

Implications of Recruitment Choices

- Extent of generalizability and to whom from any one route?
- Recruitment proportions with resultant
 volunteer biases
 cost implications (per study participant)?
- Power considerations
 - Which contaminants and likely range?
 - Extent of stratification, sub-group analysis by major co-variates?

Community Engagement

- Newcomer groups and regional public health authorities approached BC colleagues to study contaminants among pregnant women
- Growing environmental awareness among diverse groups e.g. <u>http://futurewatch.net/</u> though historically public health reach has been limited (Gibson-Wood et al 2012)
- Recruitment requires motivation and interest, without unduly raising concern....how?
- Do we need additional qualitative work wrt
 - Understandings of links between practices and exposures
 - Perceptions of contaminant related risks

Contaminants & Matrices of interest?

- Metals particularly mercury(Hg) and lead (Pb) have been documented in blood - Hg particularly can reflect recent exposures (months) and be reduced with lower intakes
- Organohalogen compounds persistent, relatively easy to measure in blood, sources some Cdn e.g. PCBs, PBDEs individual modifiability limited
- Other consumer products (particularly personal care and cleaning e.g. Triclosan? Bisphenol A, other) and Other environmental exposures e.g. arsenic via arsenates in urine. Different matrices & unclear modifiability
- Could focus on metals in blood and bank other specimens and matrices for future analytical work

Exposures of Interest

- For Hg, in addition to fish and shellfish & occupational sources - skin whitening products, Ayurvedics and herbal medicines.
- For **Pb**, in addition to living near Pb-contaminated soils or in homes with Pb-containing paint, occupations involving batteries and metal work - use of traditional cookware & pottery, imported foods, kohl-based cosmetics, consumption of certain Ayurvedic and herbal medicines
 - For **Cd**, in addition to smoking and occupational exposures, diet (phosphate based fertilizers with Cd & sewage sludge) (ATSDR, 2012)

Questionnaire documentation

- Substantial set of practices and environments
- Larger set of questions with more contaminants
- Across individual history what windows of exposure?
 - In Canada and in countries of origin?
 - Life stages e.g. pregnancies?
- How long can we make questionnaires and
 - maintain valid assessment?
 - promote participation?
- At home, centres or clinics? links with specimen collection e.g. via private laboratory

Interventions and Evaluation

Interventions among those with higher contaminant concentrations

- Individual dietary or intake counselling ethically required if above certain levels, as per Health Canada guidelines
- Awareness campaigns, as per imported consumer products with lead
- Informing regulatory authorities wrt imports e.g. of fish
- Other....?

Include pilot evaluation with aim of:

- Understanding perceived benefits (qualitative)
- Demonstrating effectiveness (or lack thereof) of interventions
- Documenting associated resource costs

Discussion

Open and emailed comments to <u>dolon.chakravartty@mail.utoronto.ca</u> <u>Donald.cole@utoronto.ca</u> or other team members known to you

References (i)

Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cadmium. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA. 2012. http://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=48&tid=15

Blacksmith Institute. The World's Worst Pollution Problems: Assessing Health Risks at Hazardous Waste Sites. 2012. <u>http://www.worstpolluted.org/2012-report.html</u>

Bushnik, T., Haines, D., Levallois, P. et al. (2010) Lead and bisphenol A concentrations in the Canadian population. Statistics Canada. <u>http://www.statcan.gc.ca/pub/82-003-</u> <u>x/2010003/article/11324/findings-resultats-eng.htm</u>

Cole, DC, Kearney, J, Sanin, LH, Leblanc, A, Weber, J. Blood mercury levels among Ontario anglers and sport-fish eaters. *Environmental Research* 2004; 95(3): 305-314

References (ii)

Gibson-Wood H, Wakefield S, Jermyn L, Bienefeld M, Vanderlinden L, Cole D & Baxter J. A drop of water in the pool: information and engagement of linguistic communities around a municipal pesticide bylaw to protect the public's health. *Critical Public Health* 2012: 1-13 http://www.cehe.ca/adropofwaterinthepool

Lye, E, Legrand, M, Clarke, J, Probert, A (2013) Blood Total Mercury Concentrations in the Canadian Population: Canadian Health Measures Survey Cycle 1, 2007-2009. *Can J Public Health*; 104(3); e246-e251.

Premji S, Duguay P, Messing K, Lippel K. Are immigrants, ethnic and linguistic minorities over-represented in jobs with a high level of compensated risk? Results From a Montreal, Canada study using census and workers' compensation data. *American Journal of Industrial Medicine* 2010; 53; 875-885.

Singh AK, Singh M. Lead decline in the Indian environment resulting from the petrol-lead phase-out programme. Sci Total Envt 2006;368:686-694 doi:10.1016/j.scitotenv.2006.04.013