

Early Life Exposure to Phthalates and Organophosphate Esters and the Development of Childhood Asthma and Wheeze

Garthika Navaranjan, PhD

Occupational and Environmental Health Seminar

April 9, 2021

Conflicts of Interest

None to declare

Childhood asthma

- Asthma most common chronic disease
 among children
- Rapid increase in prevalence of childhood asthma thought be explained by environmental factors
- Children spend most of their early life in the indoor environment

Phthalates and organophosphate esters (OPEs)

- Phthalates used primarily as plasticizers, and as solvents and lubricants

• OPEs used as flame retardants and plasticizers

Phthalates, and OPEs and childhood asthma

School of Public Healt

- Studies found association between phthalates, particularly DEHP, and childhood asthma, although inconsistent
 - No longitudinal studies examining early life exposure
 - Lack of examination of chronic exposure
 - Few studies examined gene-environment interactions
- Few studies have examined OPE exposure and childhood asthma
 - Limited exposure data

Research objectives

- 1. Assess level of exposure to phthalates and OPEs among Canadian children during early life
- 2. Examine the association between early life exposure to phthalates and OPEs, using house dust, and the development of childhood asthma and wheeze
- 3. Elucidate gene-environment interactions in the development of childhood asthma and wheeze

CHILD Cohort Study

- Families recruited from 2008 to 2012
- 3455 eligible children followed from pregnancy
- Examining development of asthma and allergy

Exposure and outcome assessments in CHILD

UNIVERSITY OF TORONTO DALLA LANA SCHOOL OF PUBLIC HEALTH

Objective 1: Assess level of exposure to phthalates among Canadian children during early life using urine samples

• **Spot urine samples** collected at 3 months, 1 year and 3 years analyzed for 8 phthalate metabolites

Questionnaires administered at several time points on multiple risk factors (demographic, home environment, nutrition)

Parent Compound	Metabolite Measured	
Dimethyl phthalate (DMP)	Mono-methyl phthalate (MMP)	
Diethyl phthalate (DEP)	Mono-ethyl phthalate (MEP)	
Dibutyl phthalate (DBP)	Mono-butyl phthalate (MBP) (∑ mono-n-butyl mono-iso-butyl phthalate (MiBP))	
Benzyl butyl phthalate (BzBP)	Mono-benzyl phthalate (MBzP)	
Di(2-ethyl-hexyl) phthalate (DEHP)	Mono-2-ethylhexyl phthalate (MEHP) Mono-(2-ethyl-5-oxohexyl) phthalate (MEOH Mono-(2-ethyl-5-hydroxyhexyl) phthalate (ME	
Di-n-octyl phthalate (DOP)	Mono-3-carboxypropyl phthalate (MCPP)	

UNIVERSITY OF TORONTO

Statistical analysis: Assess level of exposure to phthalates among Canadian children during early life using urine samples

- Geometric means and standard deviation calculated
- Trends in concentration across age examined using linear mixed models with random intercept
- Differences in concentrations within key factors at each age assessed using ANOVA

Results: Assess level of exposure to phthalates among Canadian children during early life using urine samples

 High detection frequency (70-100%) for all phthalate metabolites, except MMP

Dalla Lana

*adjusted for specific gravity

School of Public Health Navaranjan et al. J Expo Sci Environ Epidemiol 2020

UNIVERSITY OF TORONTO DALLA LANA SCHOOL OF PUBLIC HEALTH

Results: Assess level of exposure to phthalates among Canadian children during early life using urine samples

 $\blacksquare MBP \blacksquare \Sigma MEHPs \blacksquare MEP \blacksquare MBzP \blacksquare MCPP$

Household income (in \$1000's)

p<0.05 for difference in concentration across income for all phthalate metabolites, at all time points, except MBP at 3 months

Dalla Lana Navaranjan et al. J Expo Sci Environ Epidemiol 2020

Results: Assess level of exposure to phthalates among Canadian children during early life using urine samples

 $\blacksquare MBP \blacksquare \Sigma MEHPs \blacksquare MEP \blacksquare MBzP \blacksquare MCPP$

No consistent and significant differences in concentration observed by breastfeeding status, gender, study site, maternal age, maternal education, child's ethnicity

Dalla Lana School of Public Health Navaranjan et al. J Expo Sci Environ Epidemiol 2020

Objective 1: Assess exposure to phthalates and OPEs exposure during early life using house dust samples House dust samples from the most used room and child's sleeping area combined and analyzed for 5

٠ phthalates and 29 OPEs for 726 children

Room	∑OPE (ng/g)
Bedroom Most Used	82700 † 47200
Bedroom Most Used	58900 48500
Bedroom Most Used	263000 † 237000
Bedroom Most Used	94300 86800

Objective 2: Early life exposure to phthalates and OPEs and development of childhood asthma and wheeze

- Exposure assessed using house dust samples collected at 3-4 months (Objective 1)
- Outcomes of interest:
- 1. Physician diagnosed definite asthma at 5 years
- 2. Defined as 2 or more occurrences of wheeze between 2 to 5 years, based on either parental report or physician assessment

Statistical Analysis: Early life exposure to phthalates and **OPEs and development of childhood asthma and wheeze**

- Logistic regression to determine odds ratio with 95% CI
- Potential confounders examined using questionnaire data:
 - Gender, study site, household income
 - Smoking inside home
 - Parental history of asthma
 - Flooring type, home volume, period home built
- Interaction between exposure to each phthalate and sex examined in logistic regression models

Study population: Early life exposure to phthalates and **OPEs and development of childhood asthma and wheeze**

- Representation across all study sites among cases (asthma & recurrent wheeze) and non-cases
- Higher proportion of cases (> 60%) were boys
- Low prevalence of indoor smoking (< 3%) among cases and non-cases
- Roughly 50% of cases and non-cases had an annual income >\$100 000

Navaranjan et al. Environ. Res 2021 https://doi.org/10.1016/j.envres.2021.110981

Results: Association between early life exposure to OPEs and development of childhood asthma and wheeze

^a odds ratios adjusted for study site, gender, parental history of asthma, household income

*Those associations circled in purple were not statistically significant when adjusting for other OPEs

Objective 3: Elucidate gene-environment interactions in the development of childhood asthma

- Genetic risk examined using genetic risk scores (GRS)
 - Genome-wide association study by Pividori et al. 2019 used to identify genetic variants
 - Four variants (rs3816470, rs3902920, rs8076131, rs12603332) found to be strongest predictors of asthma in CHILD
 - Variants weighted according to their effect size for asthma and summed to assign a GRS
 - GRS further categorized into tertiles: low, moderate and high risk

Dalla Lana

Statistical Analysis: Elucidate gene-environment interactions in the development of childhood asthma

- Prevalence of asthma and recurrent wheeze estimated for phthalate exposure tertiles by GRS group
- Interaction between exposure to each phthalate and GRS examined in logistic regression models
 - Models adjusted for key confounders: sex, study site, ethnicity

Results: Elucidate gene-environment interactions in the development of childhood asthma

 Interaction term between each phthalate and GRS not significant for asth wheeze (p_{interaction} > 0.05)

Conclusions

- Children have ubiquitous early life exposure to phthalates and OPEs
- Higher concentrations of phthalate metabolites observed with lower income households
- Higher concentrations of OPEs observed likely due to sleeping environment
- Increased risk of asthma associated with early life DEHP exposure and TBOEP exposure and increased risk of recurrent wheeze associated with DEHP exposure
- Reduced risk observed between DEP exposure and BzBP exposure and asthma development; 24DiPPDPP*, B4tBPPP, and TmCP and risk of recurrent wheeze; and between 4tBPDPP* and risk of asthma
- Genetic risk, based on our GRS, did not modify relationship between phthalate exposure and asthma or recurrent wheeze risk

Recommendations

- Investigate sources of phthalates and OPEs driving high levels of exposure in Canadian homes, particularly in sleeping environment
- Examine early life exposure to mixtures of chemicals and with other early life exposures (e.g. allergens)
- Examine exposure to phthalates and OPEs during early life for other health outcomes (e.g. neurodevelopmental)
- Explore gene-phthalate interactions with a GRS developed with genetic variants involved in oxidative stress pathways
- Investigate early life exposure to chemicals among lower SES Canadian children and subsequent risk of disease

Acknowledgements

- Drs. Jeffrey Brook & Miriam Diamond
- Drs. Padmaja Subbarao & Shelley Harris
- Dr. Liisa Jantunen & Sarah Bernstein
- Diamond Lab Group
- CHILD Cohort Study families and entire study team

Ontario Graduate Scholarships

School of Public Health

Thank you!

Questions?

Garthika.Navaranjan@utoronto.ca

