Shale Petroleum Development: Air Emissions and Implications

Shao-Meng Li

Air Quality Research Division Science and Technology Branch Environment and Climate Change Canada

Page 1

Shale Oil and Gas

- Hydrocarbon trapped in impermeable or semiimpermeable, low porosity rock formations
 - **Shale** (claystone, mudstone, etc); once deposited as mud (clay and silt) and is a combination of clay, silica, carbonate
 - Organic materials from algae, plant, or plankton – biogenic and thermogenic gas and oil
 - Deep below the ground surface (1,500-6,100 m)

Page

Hydraulic Fracturing (Fracking)

Per US EPA definition, *hydraulic* fracturing is a process to stimulate a gas/oil well to maximize extraction. The process includes the acquisition of source water, well construction, well stimulation, and waste disposal

200 tonne frac in NE British Columbia (Heffernan, CSUR)

Fracking and Extraction

- Water acquisition locally or transported
- Chemical mixing chemicals transported
- Well construction drilling
- Well stimulation injection and fracturing
- Flowback and produced water management
 - Storage, recycling and re-use, transportation, disposal
- Gas/oil production
 - Gas/oil collection, treatment, separation
- Gas/oil transportation and distribution
- Re-fracturing

World Recoverable Shale Gas/Oil Reserves (EIA, May 2013)

Shale/Tight Oil and Gas Plays in North America

Source: U.S. Energy Information Administration based on data from various published studies. Canada and Mexico plays from ARI. Updated: May 9, 2011

Environmental Impacts of Fracking

- Air CACs, GHGs, air toxics emissions
- Water water acquisition and hydrological cycles, fracking fluid leakage, produced water management and disposal
- Seismicity induced during fracking
- Health impacts from exposure to air and water contaminants

Fracking Fluid and Produced Water

- 99.5% water and sand (proppant); water can be replaced by CO₂/propane/butane/N₂
- Chemical additives serving purposes of: friction reducers, biocides, corrosion inhibitors, gelling agent, and clay stabilizer
- Additives depending on the rock properties; chemical composition is proprietary information only partially publicly disclosed
- Naturally occurring radioactive materials (NORMs), salts, metals, and dissolved solids in produced water
- Disposal: well injection, waste water treatment plants, recycling

Air Emissions from Fracking

CAC emissions

- Transportation of water and chemicals: CACs and GHGs
- Diesel or natural gas powered equipment (compressors, drilling rigs, pumps etc); CACs and GHGs
- Flaring/venting: CACs/GHGs
- Storage and processing facilities: VOC, CH₄

GHG emissions

- Natural gas byproducts: CO₂
- CH₄ leakage rate ~2.4% (EPA, 2013), originating from wells, separators, compression stations, pipelines, gas returns to surface with flowbacks
- Flaring/venting: CO₂, CH4, black carbon

Air toxics emissions

- from startup phase fracking fluid storage, handling, and disposal
- from production phase storage, collection, processing, and distribution

Health Impacts of Fracking Fluid and Related Air

Emissions (Colborn et al., 2011, in *Human and Ecological Risk Assessment*)

- HF fluid chemicals: 353 out of 994 fracking chemicals identified in fracking operations
 - >75% of the 353 chemicals affected the skin, eyes, and other sensory organs
 - 52% affected the nerve system
 - 40% affected the immune and kidney systems
 - 46% affected the cardiovascular system and blood
- Air emission health impacts
 - 35 chemicals affect the brain/nervous system; 33 liver/ metabolism; 30 endocrine system (reproductive and developmental effects); 28 immune system; 27 cardiovascular/blood; 25 sensory, and 25 respiratory systems

Page 11

Shale Petroleum Extraction Emission CHaracterization (SPEECH) studies

Objectives

- To survey regional air emissions from the shale petroleum extraction activities in the North Peace River region and the Horn River Basin in northeastern British Columbia
- To survey the Bakken shale plays in southeastern
 Saskatchewan, to determine air pollutant emissions to the atmosphere
- To determine the emission rates of CACs (VOCs), GHG/SLCP (CO₂, CH₄, black carbon), and air toxics (H₂S, aromatics) from these development activities
- To provide data that can be used in emission inventory development and validation for policy making decisions

Shale Petroleum Extraction Emission Characterization (SPEECH) studies

SPEECH 2013 Study, Northeast British Columbia

Fracking activities in northeastern BC (fracfocus.ca, accessed Nov 2014)

Airborne Measurements in NE BC

Gases – Continuous Measurements

Aerosol Particles – Continuous Measurements

Black carbon (SP2)<1 sec</th>Chemical composition (HR-ToF-MS)10 secNumber/volume/mass sizedistributions from 10 nm to 10 μm1 sec

Meteorological State Parameters

Position and Altitude Wind direction, wind speed, T, P

Three Flights on September 10-11, 2013, over the Fort St. John and Fort Nelson regions

Environment Environnement Canada Canada Page 16

Survey Flight Tracks over NE BC

VOC composition in Fracking Plume / Background

Partial List of Compounds Identified in Fracking Plume from CIMS/PTR-ToF-MS

CIMS	Compounds related to fracking fluid (ie: correlated with HCl)	Compound Name	Compounds related to combustion during fracking (ie: correlated with SO_2 or HNO_3)	Name
	HCI	HYDROCHLORIC ACID	HNO3	NITRIC ACID
			SO2	SULFUR DIOXIDE
	HNCO	ISOCYANIC ACID	C4H5O	?
	CH2O2	FORMIC ACID	C3H4O2	ACRYLIC ACID
			C5H5O	?
	CH4S	METHANETHIOL?	C5H7O	?
	C2H2O2	GLYOYAL 2	C4H6O2	METHACRYLIC ACID
	C2H2O2	GLYOXYLIC ACID	C3H4O3	PYRUVIC ACID (sometimes)
	0011400		C6H6O	PHENOL
	C2H4O3	GLYCOLIC ACID	C6H8O	?
	C2H2O4	OXALIC ACID	C5H6O2	PENTADIENEOIC ACID
	0,0000		C5H8O2	2-PENTENEOIC ACID
	C4H6O4	SUCCINIC ACID	C4H6O3	2-OXO-BUTANOIC ACID
	C6H6OSO3	BENZENESULFONIC ACID	C5H10O2	VALERIC ACID
PTR-T	оF-MS Снзон снзсоснз		C5H4O3	FURANOIC ACID
		methanol	C6H12O2	HEXANOIC ACID
		acetone	C7H6O2	BENZOIC ACID
	C6H6	benzene	C7H8O2	METHYLBENZENEDIOL
	C6H5CH3	toluene	C6H6O2	BENZENEDIOL
	C6H5C2H5	xylenes/ethylbenze	ne C6H5NO3	NITROPHENOL
	НСНО	formaldehyde Pag	с7Н8О3	HYDROXYBENZYL ALCOHOL
	Environment Environ Canada Canada	nement	C9H12O2	??
		1	C9H12O3	??

Flight over gas plants

Mass Balance in A Cylinder

Emission Rate = Mass Out Rate - Mass In Rate

$$= \oint_{\theta} \vec{F}(z,\theta) \bullet r \bullet d\theta dz + \iint \vec{F}(r,\theta) \bullet r \bullet dr d\theta$$
$$= \oint_{\theta} \rho_{air}(r,\theta,z) \bullet \chi(r,\theta,z) \bullet u_{\perp}r \bullet d\theta dz + \iint \rho_{air}(r,\theta,z_{T}) \bullet \chi(r,\theta,z_{T}) \bullet v \bullet r \bullet dr d\theta$$

 ρ_{air} – air density; χ – mixing ratio; u_{\perp} – horizontal wind speed normal to the wall; r•d θ – track distance increment; z – height of plume; v – vertical wind speed

NE British Columbia Horn River Basin Shale Play Survey Results

- Data on CACs and GHGs emissions were obtained from the survey of air emissions from shale fracking activities in northeast British Columbia
- High emissions of CO₂ and CH₄ were found in gas plant emissions, along with many CACs
 - Higher emission rates for CO₂ compared to company reports
- Detailed speciation of hydrocarbons and other CACs were obtained for shale fracking and gas processing emissions

SPEECH 2015 Study, Bakken Shale, southeast Saskatchewan

Shale Petroleum Extraction Emission Characterization (SPEECH) studies

Bakken fracked wells on both sides of the border

Canada

Bakken Flares Detected from Space

Oil from Bakken is shipped via a new Enbridge pipeline north to Canada then to the US Midwest, and by rail cars to the east coast. In ND alone, gas is flared, from 100 to 266 million CF/day from 2010-2012, emitting CO_2 equivalent to 100 million cars.

Measurements during SPEECH 2015

- CH₄, CO₂, CO, CH₄/CO₂ carbon isotope
- NO, NO₂, SO₂, H₂S
- VOCs in canisters (~150 VOCs)
- OVOCs + BTEX
- Acids (organic and inorganic)
- Black carbon, PM_{2.5} and particle number size distribution
- Met parameters (T, P, RH, 3-d wind speeds, wind direction, turbulence)

Photo by Andrea Darlington

Well Map and SPEECH Survey Routes

Tracer Release Experiment Design

Summary

- Many chemicals in fracking fluid can be emitted into the air during fracking, thus potentially leading to respiratory exposure risks
- Emissions from continued oil and gas productions from fracked wells can be significant. In gas plants, large amounts of waste gas (e.g., CO₂) are discharged into the atmosphere
- A significant portion of fracked wells has CH₄ emissions from leaks; but a small number of facilities dominate regional CH₄ emissions from these facilities

Page 31

Contributors to the SPEECH studies

SPEECH 2013 Participants

Katherine Hayden, John Liggio, Julie Narayan, Samar Moussa, Ralf Staebler, Peter Liu, Jason Obrien, Richard Mittermeir, Danny Wang, Paul Makar, Andrea Darlington, Amy Leithead, Stewart Cober, Patrick Thompson, Ka Sung, NRC Aircraft Team

SPEECH 2015 Participants

Ralf Staebler, Julie Narayan, Andrea Darlington, Kathy Hayden, John Liggio, Amy Leithead, Peter Liu, Jeremy Wentzell, Patrick Lee, Richard Mittermeier, Andrew Sheppard, Raymond Atienza, Rajananth Santhaneswaran, Doug Worthy, Morgan Lopez, Bob Kessler, Larry Giroux

