Light at night as a potential cause of breast cancer

Michael Leung February 24, 2017

DISCLOSURE

Presenter:

Michael Leung

I have <u>no</u> conflicts of interest to disclose.

OUTLINE

- A short history of cancer
 - Treatment through the ages
 - Shift to prevention
 - Importance of research
- Causes of breast cancer
 - What is known?
 - Emerging risk factors
- Shift work in Canada
- Circadian rhythm
- Evidence
 - Shift work and cancer
 - Shift work and melatonin
- Future directions

Treatment through the ages

2500 BC

First description of cancer found in an Egyptian text:

"a bulging tumor in [the] breast... like touching a ball of wrappings."

Discussing treatment:

"[There] is none."

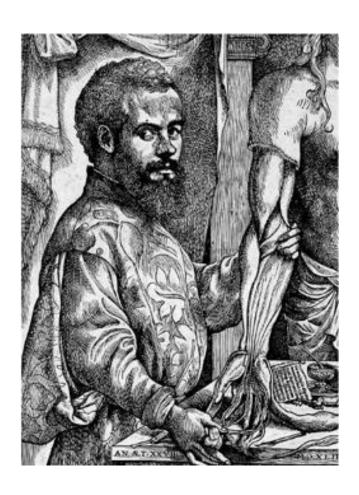
Treatment through the ages

500 BC

The Persian queen, **Atossa**, is troubled by a bleeding lump in her breast

Greek slave performs a primitive mastectomy

Treatment through the ages


"black bile without boiling causes cancer"

Claudius Galen, 130 AD

"Melas" – Black "Khole" – Bile

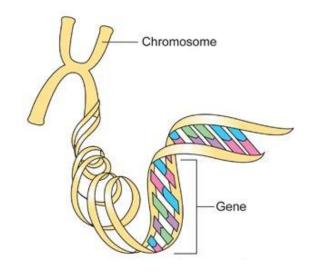
Melancholia

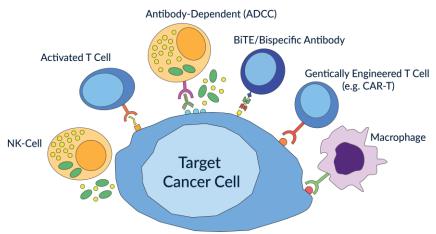
Treatment through the ages

16th century

Vesalius searched for black bile, but couldn't find it

Cause remained elusive.

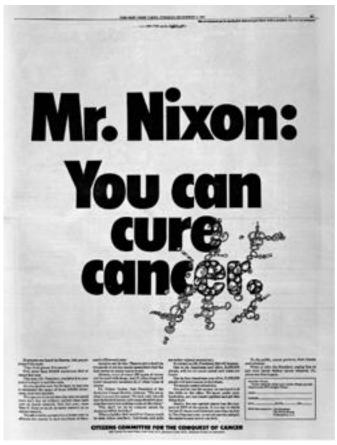

Treatment through the ages



Medieval surgeons understood little about the disease, but they chisel away with knives and scalpels

Some use lead, fire or acid.

Treatment through the ages



Late 19th/Early 20th century

Surgery
Radiation therapy
Chemotherapy
Immunotherapy
Other

Treatment through the ages

New York Times, 1970

Focus has been on cure
Little known about the disease

Understanding and treatment of cancer keeps morphing radically over time

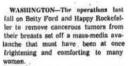
Treatment through the ages

Case 1:

Chronic myeloid leukemia (CML) or Hodgkin's lymphoma, then we can now increase a life span by decades

Case 2:

Metastatic pancreatic cancer, prognosis hasn't really changed


Case 3:

Breast cancer, estrogen-receptor negative, HER2-negative, unresponsive to chemotherapy, chances of survival has only marginally improved

Shift to prevention

Nicholas von Hoffman

False front in war on cancer

 Along with the worrisome adjurations to give one's self frequent breast examinations, women were repeatedly told that early detection almost certainly means that things will work out all right.

Unhappily, the prospects for recovery arres't that good. Only \$4 per cent of the women diagnosed as having breast cancer live five years or longer. This is a 4 per cent improvement over the recovery rate of 15 years ago and is much better than for cancer of the cervix uterl, a disease for which expectations for survival have actually worsened during the same period.

THESE FIGURES are drawn from an analysis of cancer statistics and how they are presented to the public in January-February issue of the Columbia Review of Journalism. The author is Daniel S. Greenberg, perhaps our finest science journalist, and his conclusion is that the war against cancer has turned into a medical Viet Nam.

Greenburg says that not only have there been none of the breakhrus we're slaway being promised, but that there really has been little if any progress in cancer treatment since the mid-199a. He did find considerable improvement in the death rates between 199a and 1955, attributable not to cancer cures, however, but to patients "surviving cancer operations that previously killed them." Greenberg suggests that when the American Cancer Society announces that, "Cancer is one of the most curable diseases in this country," it's basing its assertion on suspect statistics which are then presented to the public in a context of misleading optimism. No doubt this helps keep the collection plate full, just as it probably enounages Congress to continue kicking in 5000 million for cancer research every year.

Nevertheless, the cupidity, birocracy, and entronched obtaseness of the cancer industry can't entirely explain how this branch of medicine goes on failing with such unquestioning public support. Greenberg isn't the first person to say the cancer effort has deadended, but the objections do no good.

Part of the explanation is that people don't like to think about cancer and, when they do, they would just as soon think all those scientific folks in white smocks with reports and pipeties know what they're doing. After all, if chemotherapy, radiation, and surgery are statistically nearly indistinguishable from the lake cancer cures the quacks administer, where are we to place our hopes if the disease strikes us?

Then, the style of the prevailing medical approach is one we Americans ected to The "war" on cancer, the "altack" on cancer, or the phrases like mobilizing resources, massing scientific known-how to "beat" cancer, suit our thinking. We've been taught to conceive of diseases, too, as foreign invaders, as

The tools of cancer therapy are weapon-like, and we believe in that also. Surgery, radiation, chemical warfare all are aggressive, intrusive and powerful, just the stuff to knock out tough enemies like the Viet Cong or a cancer cell.

It's comforting for us to believe we have the kind of firepower therapy that can intervene to smash our biological apponents. Or, we beat them with technological superiority as with the latest c a it c er gimmick, immunotherapy, which, Greenberg reports, wiser medical minds place little hope in.

What they do hold out hope for ts cancer prevention. The greatest promise lies not in curing the disease, but in making sure people don't get it. Instead of big X-ray guns we should be looking at cigarets, drinking water, food additives, air, and mutrition in general. According to Greenberg, the amount of money being spent on nutritional research is "close to ali."

THE IDEA of preventive medicine is faintly un-American. It means, first, recogniting the enemy is us and that we have to give up the idea that we can abuse ourselves and expect the doctors to put us back together when we have disease. It also means a different sort of practice of medicine, one in which the physician doesn't play the role of here, Finally, of course, preventive medicine isn't gimmicky, aggressive or lucrative to the hospital, drug and medical equipment industries.

The times still aren't ready for such ideas. Congress is aching to pass a national health bill which will encourage yet more "heroic" cancer therapy. The Ford administration still thinks that clean water and air is a plot against the free-enterprise system and would rather put the dough in bombers.

So, pray that Dr. Miraculous will find the cancer cure, and phone in your pledges to all medical telethons.

King Features Synticate

"the idea of preventive medicine is faintly un-American. It means, first recognizing that the enemy is us"

Chicago Tribune 1975

Shift to prevention

Primary Prevention

Identification of risk factors and implementation of interventions to reduce or eliminate cancer risk

(SOURCE: WHO Primary prevention of cancer through mitigation of environmental and occupational determinants, http://www.who.int/phe/news/events/international_conference/Background_interventions.pdf, 2011)

Action

- Need research evidence to take action
- •As we learn more, research can refine action

What is known?

- Leading cause of cancer incidence and second leading cause of cancer deaths among Canadian women
- 25,000 new cases among Canadian women in 2015
- 68 new cases each day

What is known?

What is known?

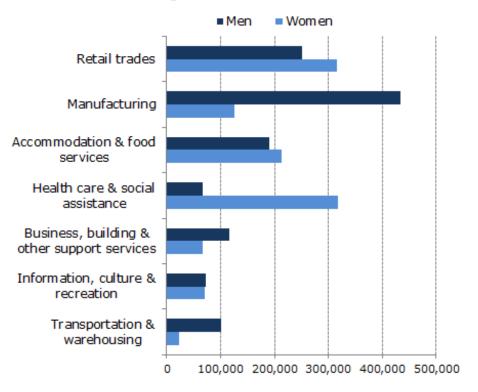
- Known genetic mutations account for about 5-10%
- Established risk factors (high breast density, late age at childbirth, alcohol, lack of physical activity etc): 30-40%
- Unknown cause: ~50%
- Shift work/light at night?

Emerging risk factors

- 1. Persistent organic pollutants
 - -Plasticizers: phthalates, biphenol A
 - -Some fungicides (organotins) and organochlorines (pesticides and PCBs)
 - -Flame retardants (PBDEs)
 - -Polycyclic aromatic hydrocarbons
- 2. Pharmaceuticals
- 3. Shift work/ Light at night

Ref: Aronson KJ, Woolcott CG. Emerging hypotheses and methodologic approaches. In: Review of Lifestyle and Environmental Risk Factors for Breast Cancer: Report of the Working Group on Primary Prevention of Breast Cancer. Canadian Breast Cancer Initiative, 2001.

"No, your mom isn't rehearsing for the next 'Night of the Living Dead' movie. She always looks like that after working four 12-hour shifts."


Definition

- Shift work: occupational schedule that is consistently outside of, or rotates from, standard daytime work hours; various schedules (permanent, rotating) and timing
- ≈ 27% of the working population works a schedule other than a regular day schedule

Currently 4.1 million Canadians

Shift work in Canada

Industries with the highest number of shift workers in Canada

Number of workers

Source: Canadian Survey of Labour and Income Dynamics, 2006. Demers PA et al. 2001. See http://www.iwh.on.ca/shift-work-symposium/

Shift work in Canada

Shift work as a necessity

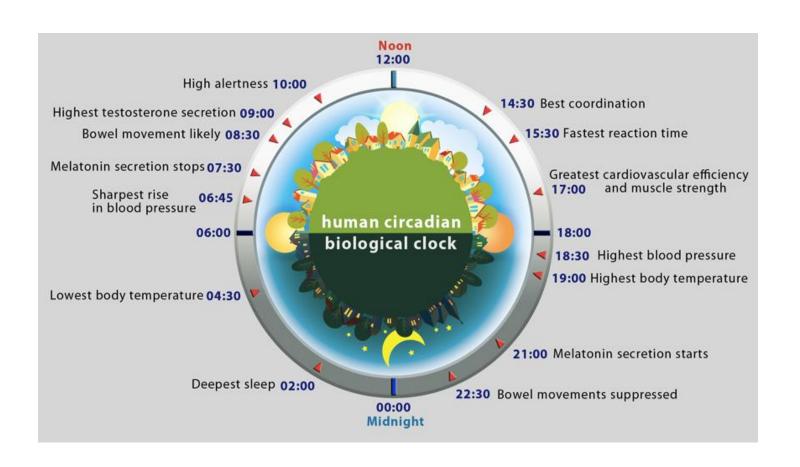
Technological necessity:

e.g. power generation

Maximize productivity and profit:

e.g. call centers, restaurants, casinos

Vital social service:


e.g. healthcare

40% of healthcare employees are shift workers

84% of hospital employees are women

- Daily oscillations in physiological and behavioral processes
- Internal body clock = circadian (daily) rhythm: regulates many biological processes in (approximately) 24-hr cycle:
 - brain wave activity
 - hormone production
 - cell regeneration
 - sleep patterns
- External cues: light/dark cycles, eating/drinking, exercise

Disruption through night work

- Jet lag: body clock out of sync with destination time
- Shift work including nights: simulated jet lag... but worse
- "Social jet lag": discordance between when your body "wants" to sleep and when you need to be awake

Night work and health outcomes

Psychosocial

Work/life "balance" issues

Physiologic

Changes in cortisol, melatonin, other hormones; glucose etc

Physical

Sleep, GI, CVD, reproductive problems, diabetes, metabolic syndrome, several cancers etc

Shift work and cancer

Pre-2007

- Several early epidemiologic studies identified shift work as a risk factor for cancer sites including breast, prostate, colon and endometrium
- In 2007 the International Agency for Research on Cancer (IARC) classified 'shift work involving circadian disruption' as a probable carcinogen (sufficient in animals; limited in humans)
 - Strongest evidence/ most studies: breast cancer, mainly among nurses and flight crew
- Mechanisms linking shift work with human cancer risk has not been definitively established.

- ~ 15 to 50% increased risk of breast cancer, and some increases in other cancers such as colon, prostate, ovarian, endometrial etc
- Definitions of shift work have varied
 - Based on response to specific questions
 - Based on job title/job exposure matrix
 - Most studies limited to nurses and flight crew

Shift work and cancer

Update since 2007

- Prostate, ovarian, colon, lung cancers
- Breast cancer
 - > 3% increased risk for every 5 years of shift work
 - ➤ 80% increased risk for every 5 years of shift work with 6+ consecutive nights (Norway)
 - ➤ Higher risk:
 - » 20yrs+ work including nights (Sweden)
 - » 30yrs+ work including nights (Canada)

Shift work and cancer

ORIGINAL ARTICLE

Increased risk of breast cancer associated with long-term shift work in Canada

Anne Grundy, ¹ Harriet Richardson, ¹ Igor Burstyn, ² Caroline Lohrisch, ³ Sandip K SenGupta, ⁴ Agnes S Lai, ³ Derrick Lee, ³ John J Spinelli, ^{3,5} Kristan J Aronson ¹

Study Design

Case-control study conducted in Vancouver, British Columbia and Kingston, Ontario

- 1200 cases of incident breast cancer (registry)
- 1100 controls (healthy screened women)

Objective

Evaluate relationship between long-term shift work and breast cancer risk in general population

Source: <u>Occup Environ Med</u> 2013; 70:831-838.

Job No.	Start (Month- Year)	Period End (Month- Year)	Type of Industry, Business or Service	Company Name and Location	Job Title	Rate of Intensity* (Please check one for each job)
Eg.	Nov-1993	Feb-2003	Hairdressing	Suki's Hair Salon, Vancouver, BC	Colour Specialist	☐ Sedentary ☐ Moderate ☐ Light ☐ Heavy
1						☐ Sedentary ☐ Moderate ☐ Light ☐ Heavy

Job No.	Average number of	Percentage of time worked at each shift			Usual hours worked at each shift					
	hours worked per week	Day shifts	Evening shifts	Late-night shifts (work	Day shifts		Evening shifts		Late-night shifts	
	·			through midnight)	Start	End	Start	End	Start	End
eg.	35	80%	20%		10:00	5:30	5:30	9:00		
		0070	2070		am	pm	pm	pm		
1										
2										

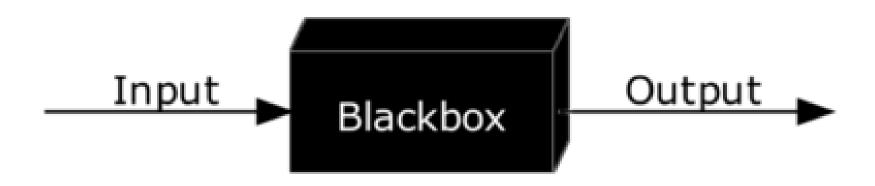
Years Shift Work History	Cases N (%)	Controls N (%)	Odds Ratio (95% CI)
Overall*			
None	756 (66.20%)	772 (65.53%)	-
0 - 14	286 (25.04%)	312 (26.49%)	0.96 (0.79 – 1.16)
15 - 29	72 (6.30%)	81 (6.88%)	0.92 (0.66 – 1.29)
≥ 30	28 (2.45%)	13 (1.10%)	2.21 (1.14 – 4.28)

^{*}Model adjusted for age and centre

Years Shift Work History	Health Occupations OR (95% CI)	Non-Health Occupations OR (95% CI)
None	-	-
0 - 14	0.80 (0.48 – 1.33)	1.04 (0.84 – 1.29)
15 - 29	1.06 (0.58 – 1.92)	1.05 (0.69 – 1.62)
≥ 30	3.11 (1.10 – 8.77)	2.25 (0.92 – 5.52)

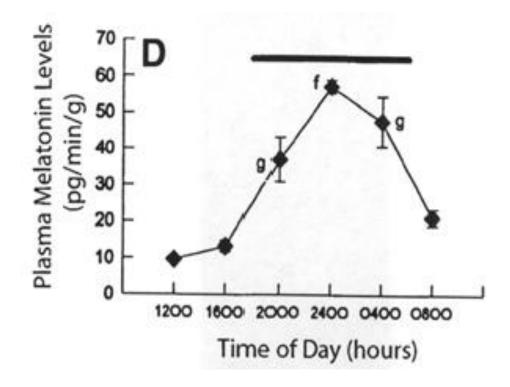
Shift work and cancer

Findings

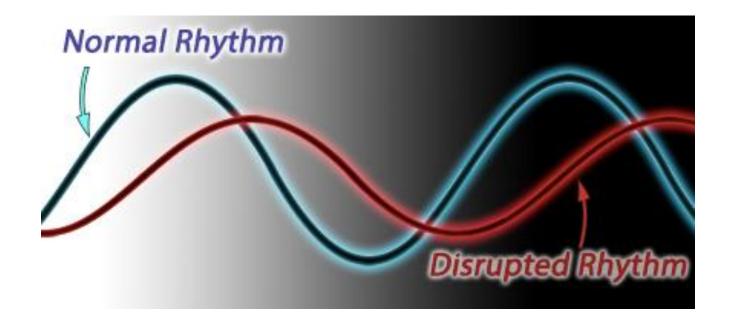

- Overall positive association between >30 years of shift work and breast cancer risk in a population-based case-control study
- Association has same pattern in health occupations

Strengths

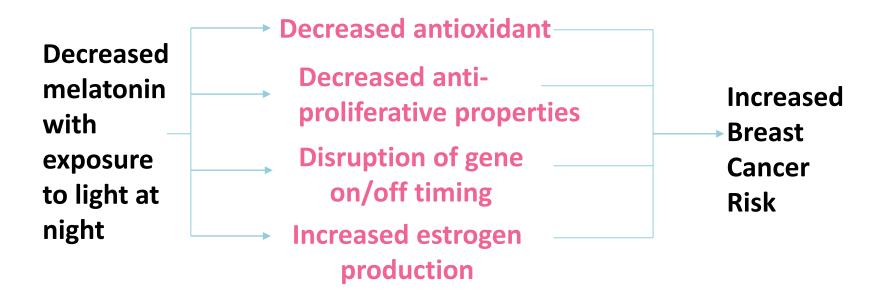
- Large sample size
- Questionnaire comprehensive exposure assessment


Limitations

- Selection bias sensitivity analysis
- Response bias balanced responses

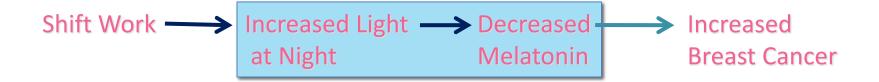

Shift work and melatonin

Melatonin levels vary with circadian rhythms and are high at night and low during the daytime hours



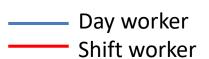
Reiter RJ et al. Melatonin: potential utility for improving public health. TAF Preventive Medicine Bulletin 2006; 5(2):131-158.

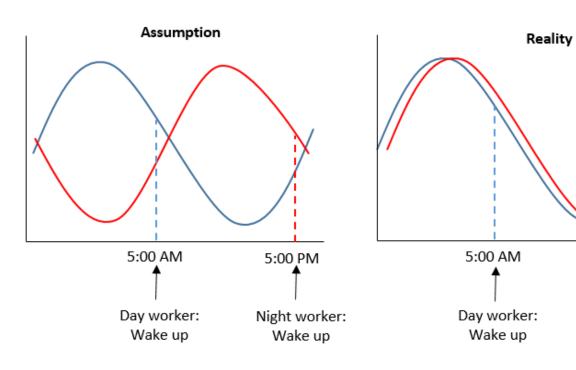
Shift work and melatonin



Shift work and melatonin

Refs: Anisimov et al. 1997; Blask et al. 2005; Cini et al. 1998; Tamarkin et al. 1981; Cos et al. 2006; Reiter 2004

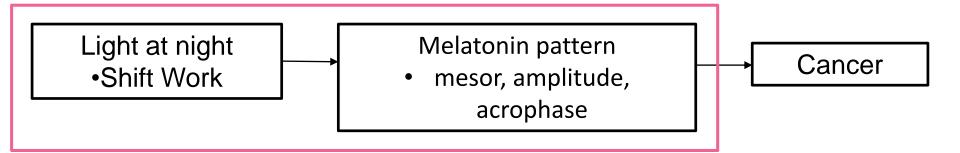

Shift work and melatonin

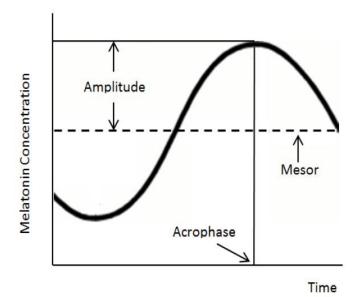


- Several laboratory studies suggest increased light leads to decreased melatonin
- Epidemiologic (observational) studies: few, some concordance
 - Limitations: confounding by circadian rhythm i.e., measuring at the wrong chronological time

Ref: Grundy A, Tranmer J, Richardson H, Graham CH, Aronson KJ. The Influence of Light at Night Exposure on Melatonin Levels Among Canadian Rotating Shift Nurses. *Cancer Epidemiology, Biomarkers & Prevention* 2011; 20 (11):2404-2012.

Shift work and melatonin




5:00 PM

Night worker:

Wake up

Shift work and melatonin

Shift work and melatonin

Research Article

Shift Work, Chronotype, and Melatonin Patterns among Female Hospital Employees on Day and Night Shifts &

Michael Leung^{1,2}, Joan Tranmer^{1,3}, Eleanor Hung¹, Jill Korsiak^{1,2}, Andrew G. Day^{1,4}, and Kristan J. Aronson^{1,2}

Objective

- 1. Evaluate the relationship between shift work and melatonin pattern
- 2. Evaluate effect modification by chronotype

Participants

- n=328
- September 2011- February 2014
- 168 shift workers, 160 day workers
- 48-hour urine samples

Cancer Epidemiology, Biomarkers & Prevention

Shift work and melatonin

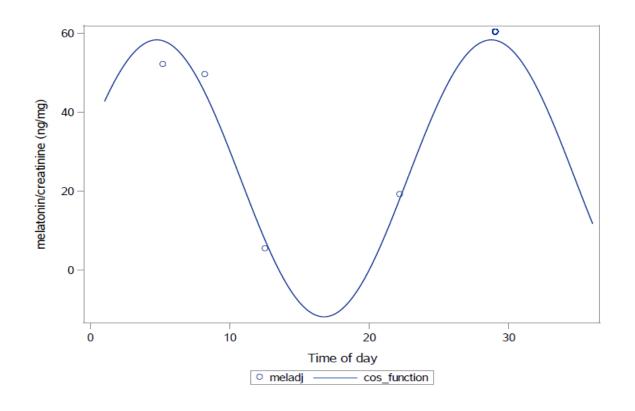
Chronotype

- Chronobiologic propensity for sleep and activity
- Hypothesized effect modifier, may help explain why among shift workers some develop cancers and others not
- Adaptability and tolerance to working at night

Shift work and melatonin

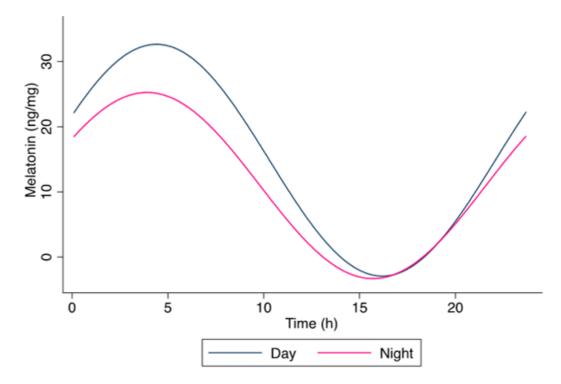
Chronotype

- Munich Chronotype Questionnaire to characterize people based on their mid sleep time
- Sleep 12-6, mid sleep time is 3


<u>Chronotype</u>			
0-<1	Extreme early type		
1-<2	Moderate early type		
2-<3	Slight early type		
3-<4	normal		
4-<5	Slight late type		
5- <6	Moderate late type		
6-≥7	Extreme late type		

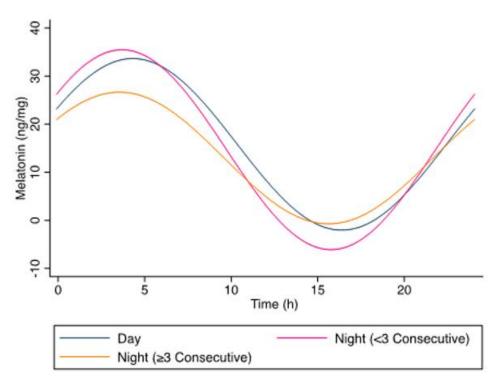
Shift work and melatonin

	Sleeping at night at home	Working on night shift	
	Mean	Mean	
Log-transformed mean light intensity between 12AM and 5AM in log lumens/m ² (SD)	-2.14 (0.06)	-0.06 (0.06)	
	"Dark"	"Dim"	

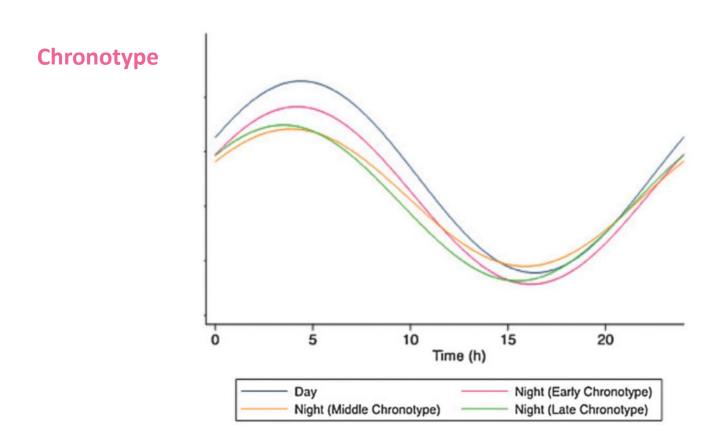

Shift work and melatonin

Cosinor analysis

Shift work and melatonin



Shift workers on night rotations had a lower mean (p<0.05) and earlier peak (p<0.05) melatonin compared to day only workers.


Shift work and melatonin

Number of consecutive nights

Among those working at night, ≥3 consecutive nights: lowest mean melatonin.

Shift work and melatonin

Late chronotype are more susceptible to light-at-night effects

Shift work and melatonin

Chronotype

	Meso	r (95% CI)	
	Crude geometric	Adjusted mean	
N	mean (ng/mg)	% change ^a	
147	15.4 (14.1, 16.7)	Ref	
114	13.6 (11.3, 15.9) ^c	-25.0 (-37.7, -9.8) ^d	
38	14.4 (9.9, 18.9)	-22.1 (-39.3, -0.6) ^d	
38	12.1 (9.7, 14.4)	-24.7 (-40.6, -4.7) ^d	
38	14.4 (9.5, 19.2)	$-30.6 (-46.8, -9.2)^{d}$	
	147 114 38 38	Crude geometric mean (ng/mg) 147	

Late chronotype are more susceptible to light-at-night effects

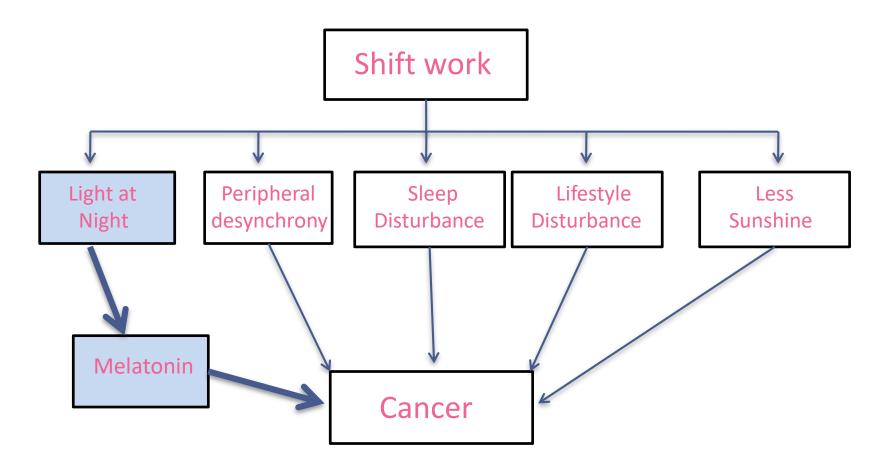
Shift work and melatonin

Findings

- Setting: dim light at night on hospital wards
- Current shift work is associated with lower mean and earlier peak time
- More consecutive nights is associated with lower mean and smaller amplitude
- Effect modification by chronotype

Strengths

- Use of different exposure metrics
- Longitudinal data 48 hour melatonin collection
- No confounding by circadian rhythm

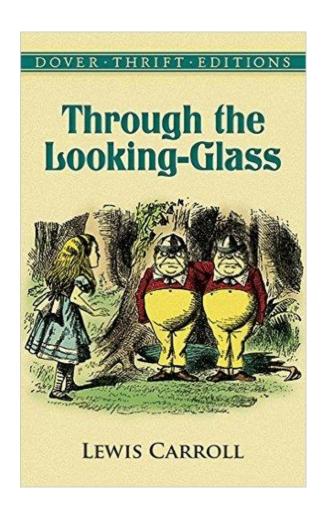

Limitations

Not generalizable

Solutions

- Limit lifetime duration of shift work to 20 years
- No more than 2 nights in a row
- Dim lighting if possible

(Some of these solutions are not possible in manufacturing and other settings...)



Adapted from: Fritschi L, Glass DC, Heyworth JS, Aronson KJ, Girschik J, Boyle T et al. Hypotheses for mechanisms linking shift work and cancer. <u>Med Hypotheses</u> 2011; 77:430-436.

- More extreme shift patterns
- Workers with brighter light levels on night shifts
- Parallel pathways: sleep quality, vitamin D etc.
- Genetic pathways
- Various ethnicities
- Direct comparisons between different shift patterns
- Ambient outdoor light seeping indoors
- Different lighting types

Ongoing Studies

- Collaboration: Prevention of ovarian cancer in Quebec (PROVAQ) study
 - Shift work, vitamin D, physical activity etc. general life style
- Shift work and sleep cardiovascular disease, cancer
- Shift work and cortisol cardiovascular disease
- Combining shift work study with others from Germany, France, Spain and Australia for a pooled analysis

Alice:

"In our country, you'd generally get to somewhere else – if you ran very fast for a long time"

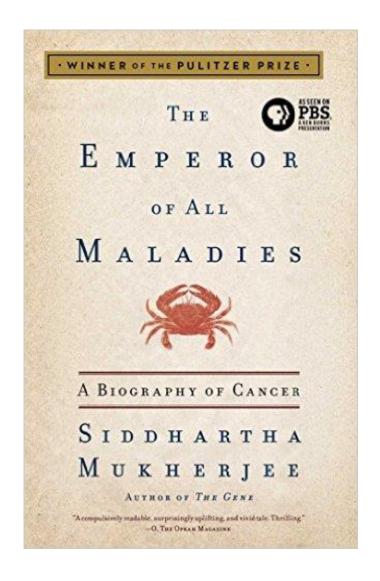
Queen:

"A slow sort of country! Now, here you see, it takes all the running you can do, to keep in the same place"

Lewis Carroll, Through the Looking Glass

ACKNOWLEDGEMENTS

- All study participants
- Kristan Aronson Supervisor and Investigator
- Anne Grundy Research Associate (University of Montreal and CRCHUM)
- Students and staff: Jill Korsiak, Eleanor Hung, Renee Corbin
- Co-investigators: Joan Tranmer, John Spinelli, Harriet Richardson, Igor Burstyn, Angela Brooks-Wilson, Johanna Schuetz, Agnes Lai, Caroline Lohrisch, Sandip Sengupta, Rozmin Janoo-Gilani, Stephen Leach, Ian Janssen, Andrew Day, Christine Collier, Chris Kyba
- Funding: Canadian Institutes of Health Research; Workplace Safety and Insurance Board of Ontario; Breast Cancer Action Kingston; Ontario/Baden-Württemberg Faculty Research Exchange
- CIHR Graduate Scholarship Doctoral Award to Anne Grundy; Master's Award to Michael Leung



ACKNOWLEDGEMENTS

QUESTIONS?

michael.leung@sickkids.ca