

Occupational Cancer Research Centre

Meeting the Challenges of Occupational Disease Surveillance in Ontario

Paul A. Demers, Ph.D. Occupational Cancer Research Centre

January 11, 2019

Towards a cancer-free workplace

No conflicts of interest to report

This project is funded by:

Ministry of HEALTH AND LONG-TERM CARE

Public Health Agency of Canada Agence de la santé publique du Canada

The work presented here has also been made possible through funding from the OCRC's core funders, listed below. Ontario's WSIB played a significant role in establishing the Centre, as did the United Steel Workers.

Canadian Société Cancer canadienne Society du cancer

😂 Email 🍈 Print ...

Government plans to review handling of workplace cancers in wake of GE Peterborough case

NEWS Apr 13, 2018 by Joelle Kovach 🔤 Examiner Staff Writer

Cancer causing chemicals prompt province-wide testing of nail salons

Katie Nicholson - CBC News - Posted: Feb 11, 2016 6:00 AM ET | Last Updated: February 12, 2016

TEALTH August 10, 2018 0.48 pm

his cancer

CANADA

'Miners are dying': WSIB to examine McIntyre Powder exposure in new study

Researchers from the Occupational Cancer Research Centre will study mining for the board

MENU ~

Top Stories

CBC

news

Workplace carcinogens lead to thousands of cancer cases in

Ontario each year: study

'Troubling allegations' prompt Health Canada

review of studies used to approve popular weed-

Maker of Roundup denies any hidden influence on studies used in approval proces

Canada set to announce a new ban on

asbestos

killer

CANADA

Ry Staff The Canadian Press

Comments Facebook 236

Asbestos-related cancer costs Canadians billions

Politics Health Canada rejects claim that new radon gas standards put Canadians at risk

The Nationa

Opinio

World

Loca

Canadian Home Builders' Association warns of 'severe and immediate health

Ontario's Occupational Disease Action Plan (ODAP)

- In June 2016 an ODAP Working Group was created including representatives from all OHS System partners as well as Public Health Ontario & The Lung Association
- The goal of ODAP is to align the OHS System's efforts on OD prevention, specifically prevention of hazardous exposures & reduction of OD burden in Ontario workplaces

Occupational Disease Surveillance

- Accurate and timely information regarding occupational disease is necessary to support evidence-based prevention initiatives and enforcement, as well as workers compensation. It can be used to:
 - Identify high risk groups
 - Set priorities for policy or prevention-related activities (e.g. regulation, education, ...)
 - Provide data necessary for risk assessment, impact assessment research...
 - Raise awareness!

Introduction: what is surveillance

from the *Dictionary of Epidemiology*:

"the ongoing scrutiny [of the occurrence of disease, injury, or hazards] generally using methods distinguished by their practicality, uniformity, and frequently their rapidity, rather than by complete accuracy. Its main purpose is to detect changes in trends or distributions in order to initiate investigative or control measures"

Options for Occupational Disease Surveillance

- Administrative health data (tumour registry, hospital discharge, OHIP...)
- Workers compensation data
- Data from clinicians and clinics
- Death certificates
- Linked data options
 - -Census and similar datasets
 - -Other options

Del Bianco & Demers. Trends in compensation for deaths from occupational cancer: a descriptive study. *Can Med Assoc J Open* 2013;1:E91-E96.

Data Source: Association of Workers' Compensation Boards of Canada (AWCBC)

Compensation Rate by Gender

Rate (CR)

Compensation = Average Fatal Claims 2011-2014 Estimated Fatal Cancers in 2011

1557 lung cancers CR = 5%

1424 CR = 6%

334
mesotheliomas
CR = 61%

Clinical Studies

- Clinical studies have been conducted in Ontario for dermatitis and asthma. These studies are not obstructed by the workers compensation system, although they usually require physician recognition of workrelatedness.
- These are valuable for identifying important characteristics of disease, but do not provide population level statistics.
 - Arrandale VH, Kudla I, Kraut AG, et al. Skin and respiratory symptoms among workers with suspected work-related disease. *Occup Med (Lond)* 2012;62:420-426.
 - Holness DL, Tabassum S, Tarlo SM, Liss GM, Silverman F, Manno M.
 Dermatologist and family practitioner practice patterns for occupational contact dermatitis. *Australas J Dermatol* 2007;48:22-27.
 - Holness DL, Tabassum S, Tarlo SM, Liss GM, Silverman F, Manno M. Practice patterns of pulmonologists and family physicians for occupational asthma. *Chest* 2007;132:1526-1531.

Challenges in the Recognition of Occupational Disease

- Clinical and pathological expression of diseases do not generally differ by cause
- Chronic disease can be diagnosed long after exposure, so a complete work history is needed
- Dose is a strong predictor of the likelihood of disease, but almost always unknown
- Most diseases have multiple causes
- Individuals differ in susceptibility

CDC Home CDC Search CDC Health Topics A-Z

C

Search NIOSH | NIOSH Home | NIOSH Topics | Site index | Databases and information Resources | NIOSH Products | Contact Us

National Institute for Occupational Safety and Health

NIOSH Safety and Health Topic: National Occupational Mortality Surveillance (NOMS)

Overview of the NOMS System

National Occupational Mortality Surveillance (NOMS) is the ongoing systematic collection, analysis, and dissemination of death data to monitor the extent and severity of occupationally related acute and chronic disease and injury in association with industrial or occupational settings. Statistical results from the proportionate mortality analysis of these data are available in the form of a query system for access to precalculated PMRs by occupation or industry. Recently, PMR Charts and Tables were added that present proportionate mortality for cancer, neurologic, cardiovascular, diabetes, and renal disease and other chronic disease. <u>More Information on the NOMS System</u>.

Occupational Mortality Statistics

NOMS PMR Query System

- <u>PMR Charts and Tables for</u> <u>Cancer and Chronic Disease</u> (New!)
- <u>PMRs By Occupation and Cause</u> <u>Of Death</u>
- <u>PMRs by Industry and Cause of</u> <u>Death</u>

About NOMS PMRs

- Methods and Data Sources
- Suggested Citation
- Note to Users
- Industry/Occupation Coding

Topic Index:

Overview of the NOMS System

PMR Charts and Tables for Cancer and Chronic Disease

PMRs by Occupation and Cause of Death

PMRs by Industry and Cause of Death

Bibliography

NOMS-Related Links

http://www.cdc.gov/niosh/topics/surveillance/NOMS/

Occupational Cancer Surveillance based on Death Certificates

- One Canadian study was conducted in BC using occupation and mortality information coded on death certificates for deaths occurring between 1950 and 1978
- Challenges in using death certificates
 - Underlying cause of death is not appropriate for all diseases
 - Questions regarding validity for occupation & industry
 - Limited cause of death information & questions regarding the accuracy
 - Proportionate mortality ratios may be difficult to interpret

Authors login

Nocca project

- Main page
- Study protocol
- Description of the data files
- Congress abstracts
- Principles for use of data

Cancer incidence by

- Acta Oncologica 2009
- Press release
- Download full-text article
- Download appendix tables
- Editorial by Dr. Aaron Blair
- Table downloads (English)
- Table downloads (Nordic)
- Occupational categories
- Utilities

Course material from the NIVA-course held in Mariehamn. Aland 29-31 Aug. 2011 can be found here

Nordic Occupational Cancer Study (NOCCA)

We present up to 45 years of cancer incidence data by occupational category for the Nordic populations. The study covers the 15 million people aged 30-64 vears in the 1960, 1970, 1980/1981 and/or 1990 censuses in Denmark. Finland, Iceland, Norway and Sweden, and the 2.8 million incident cancer cases diagnosed in these people in a follow-up until about 2005.

Further studies will focus on associations between specific work-related factors and well-defined cancer diseases with the aim to identify exposure-response patterns. In addition to the cancer data demonstrated in the incidence publication, the NOCCA project produces a Nordic Job Exposure Matrix (JEM) that transforms information about occupational title histories to quantitative estimates of specific exposures. The third essential component is methodological development targeted at better interpretation of results based on averaged information of exposures and co-factors in the occupational categories.

This study was financially supported by the Nordic Cancer Union and Scientific Council in Sweden.

- 1 Finnish Cancer Registry
- 2 School of Public Health, University of Tampere
- 3 Cancer Registry of Norway
- 4 University of Copenhagen
- Center of Public Health Sciences
- 6 Karolinska Institute
- 7 Icelandic Cancer Registry 8 Samfundet Folkhalsan

- 9 University of Tromsø
- 10 Finnish Institute of Occupational Health 11 National Institute of Occupational Health
- 12 Danish Cancer Society
- 13 Administration of Occupational Safety and Health
- 14 University of Oulu
- http://astra.cancer.fi/NOCCA/

- New: Yrke og kreft i Norge
- Full-text incidence article
- Full study description

EPI team

Eero Pukkala^{1,2} Jan war Martinsen^a Elsebeth Lynge⁴ Holmfridur K. Gunnarsdottir⁵ Pär Sparén⁴ Laufey Tryggvadottir² Elisabete Welderbass^{3,6,8,8} Kristina Kizerheim⁹

IFM tean

Timo Kauppinen¹⁰ Pirlo Heikkilä¹⁰ Nils Plato⁶ Torill Woldback¹¹ Kaare Lenvik¹¹ Johnni Hansen¹² Vidir Kristlansson¹⁹

STAT team Esa Läärä¹⁴

Project coordinator Prof. Eero Pukkala.

Large Cohort Linkage in Canada

Survey of 10% of the Canadian labour force in 1965

Annual surveys 1965-69 & 1971

~700,000 cohort members

Mortality follow-up to 1991

143,000 deaths

28,000 comparisons (specific occupation-cause of death pairs)

84-546-XCB Occupational Surveillance in Canada: Cause-Specific Mortality Among Workers, 1965-1991

84-546-XCB

Dépistage des maladies et lésions professionnelles au Canada : Mortalité par cause chez les travailleurs, 1965-1991

Home » Taxonomy term

CanCHEC (Canadian Census Health and Environment Cohort)

Description

1991 CanCHEC

The current version of the 1991 Canadian Census Health and Environment Cohort (CanCHEC) was derived on linkagebased dataset compiling socio-economic, demographic, cancer, mortality, and place of residence data (as reported on T1 tax files) for 2.5 million Canadians over an eventual 20-year follow-up period.

The 1991 Canadian Census Health and Environment Cohort contains variables measuring population characteristics, place of residence, cancer incidence, and mortality. These variables were obtained from six different data sources:

- 1991 Canadian Long-form Census (2B/2D), non-institutional population
- · 1984-2011 Historical Tax Summary Files (HTSF) (place of residence only)
- 1981-1983 T1 Personal Master File (T1 PMF) (place of residence only)
- 1969-1991 Canadian Cancer Database (CCDB),
- · 1992-2010 Canadian Cancer Registry (CCR), and
- 1991-2011 Canadian Mortality Data Base (CMDB).

Other Data Linkage Studies for Occupational Disease Surveillance

- Workers' compensation board claims that were linked to physician billing data through provincial health insurance agencies between 1995-2004.
 - Cherry et al. Data linkage to estimate the extent and distribution of occupational disease: new onset adult asthma in Alberta, Canada. Am J Ind Med 2009;52:831-840.
- Workers identified using an employer-paid health premium field in the provincial health registry, linked to physician & hospital billing, workers' compensation, and pharmaceutical records.
 - Koehoorn et al. Population-based surveillance of asthma among workers in British Columbia, Canada. *Chronic Dis Inj Can* 2013;33:88-94.

Occupational Disease Surveillance System

28 cancers

9 other diseases

Towards a cancer-free workplace

Who is in the ODSS Cohort?

34%

66%

- Cohort size: 2.2 million workers
- 15+; Mean age at cohort entry: 37.4 years (±12.3)
- Mean length of follow-up: 20.8 years
- 308 industry and 598 occupation groups

Job Title – 3 levels

- Results for hundreds of worker groups
- Broad or specific levels

Occupation Groups (Division) (Major) (Minor)

(81) Processing occupations

(813/814) **Metal** processing and related (8130) Foremen: metal processing (8133) Metal heat treating

(821/822) **Food and beverage** processing and related (8213) Baking, confectionery making and related (8223) Milk processing

(823) Wood processing(8231) Sawmill, sawyers and related(8235) Wood treating

Distribution of ODSS Cohort versus Full Ontario Workforce

Overview – Cancer (28)

Case def'n: Diagnosis for a given cancer in the Ontario Cancer Registry during follow-up

Cancer Diagnosis	Number of Cases
Prostate	36,000
Lung	34,700
Colon	17,200
Rectum	6,800
Breast	21,400
Bladder	12,400
Non-Hodgkin's Lymphoma	10,900
Brain	4,100
Cervical	2,700
Mesothelioma	850

216,765 workers with 1+ cancer diagnosis (1983-2016)

Overview – Other Health Outcomes (9)

Case def'n: data source(s) + number of records + age range + washout

Disease	Number of Cases
Asbestosis	860
Silicosis	250
Idiopathic Pulmonary Fibrosis	2,680
Asthma	10,300
Contact Dermatitis	23,800
Chronic Obstructive Pulmonary Disease*	38,800
Acute Myocardial Infarction*	23,900
Raynaud's Syndrome*	30,200
Carpal Tunnel Syndrome*	6,900

*Final case definitions to be selected

Lung Cancer Results for Suspected High Risk Occupations²⁵

High Risk Occupations	Lung Carcinogens	HR (99% CI)
Drilling/blasting	Silica	1.6 (1.3-2.0)
Other mining/quarrying	Silica, asbestos, radon	1.5 (1.3-1.7)
Mineral ore treating	Silica, asbestos	1.5 (1.0-2.3)
Clay, glass, stone processing	Silica	1.5 (1.0-2.3)
Boilermakers, platers, structural metal	Asbestos, welding fumes	1.9 (1.4-2.4)
Painting/decorating	Paint pigments, filaments, resin	1.2 (1.0-1.4)
Excavating, grading, paving	Silica	1.5 (1.3-1.7)
Construction trades	Silica, asbestos, diesel exhaust	1.1 (1.0-1.1)
Bus Drivers	Diesel Exhaust	1.2 (1.0-1.4)
Truck drivers	Diesel exhaust	1.5 (1.4-1.6)

Lung Cancer Results for Suspected High Risk Industries²⁶

High Risk Industries	Lung Carcinogens	HR (99% CI)
Metal mines	Silica, diesel exhaust, nickel	1.5 (1.3-1.6)
Non-metal mines	Silica, diesel exhaust, radon	1.4 (0.9-2.2)
Quarries/sand pits	Silica, diesel exhaust	1.4 (1.1-2.0)
Iron foundries	Silica, PAHs	1.3 (1.1-1.6)
Smelting/refining	Cadmium, arsenic, nickel	1.2 (0.8-1.8)
Non-metallic mineral products	Silica	1.2 (1.1-1.4)
General contractors	Silica, asbestos, diesel exhaust	1.2 (1.1-1.3)
Special-trade contractors	Silica, asbestos, diesel exhaust	1.0 (1.0-1.1)
Transportation	Diesel exhaust	1.2 (1.2-1.3)
Welding shops	Welding fumes	1.3 (0.9-1.7)

Diesel Engine Exhaust

- CAREX Canada estimates that 301,000 workers in Ontario (~5% of the workforce) are occupationally exposed
- Known carcinogen
 ✓ Lung cancer
 Pladder cancer

FIGURE 6 Number of workers occupationally exposed to diesel engine exhaust (DEE) by level of exposure and industry in Ontario

Towards a cancer-free workplace

Lung Cancer & Diesel Engine Exhaust

Group	Cases (Workers)	HR (99% CI)
Mines and Quarrying Occupations	435 (12,885)	1.5 (1.3-1.6)
Construction Trades	4,012 (211,691)	1.1 (1.0,-1.1)
Excavating, paving and grating and related	527 (17,956)	1.5 (1.3-1.7)
Excavating, grading & related occupations	180 (7,918)	1.7 (1.4-2.1)
Paving, surfacing & related occupations	16 (432)	1.3 (0.7-2.5)
Railway sectionmen and trackmen	47 (2,081)	1.3 (0.9-1.9)
Labouring and other elemental work	116 (3,013)	1.5 (1.2-1.9)
Other related occupations, n.e.c.	152 (3,812)	1.4 (1.2-1.8)
Transport Equipment Operating Occupations	3,468 (154,219)	1.4 (1.3-1.5)
Other Motor Transport Operating	375 (20,799)	1.3 (1.2-1.5)
Truck Drivers	2,931 (117,375)	1.5 (1.4-1.6)
Railway Transport Operating Occupations	96 (3,828)	1.2 (1.0-1.6)
Water Transport Operating Occupations	44 (2,553)	1.0 (0.7-1.5)
Other Related Occupations	138 (12,210)	1.8 (1.4-2.2)
Other Crafts & Equipment Operating Occupations	421 (21,580)	1.0 (0.9-1.2)
Stationary Engine and Related Occupations	203 (7,214)	1.2 (1.0-1.5)

Time-Stratified Lung Cancer

Towards a cancer-free workplace

Results – What about smoking and lung cancer?

Occupational Group	Respondents (Fem/Male)	Female Ever Smk	Male Ever Smk	Female Cur Smk	Male Cur Smk
All respondents (incl. not emp.)	26,200/23,000	45%	56%	25%	27%
Agriculture, logging, mining	500/1,400	35%	49%	23%	20%
Sales occupations	1,500/1,400	47%	50%	27%	28%
Managerial, admin., professional	5,000/4,300	48%	53%	26%	25%
Clerical and related	4,300/900	50%	54%	33%	28%
Services occupations	2,800/1,700	50%	50%	21%	25%
Processing occupations	1,100/3,600	54%	64%	37%	36%
Construction occupations	100/1,800	54%	75%	37%	39%
Material handling, other crafts	300/800	57%	59%	37%	41%
Transportation occupations	200/1,000	59%	71%	41%	35%

Mesothelioma & Asbestosis

- We know about compensated cases of mesothelioma and asbestosis, but what is the full picture? Are there high risk groups we have missed?
- The mines have closed and Canada will ban at end of year – How will disease risk change across different jobs going forward?

Mesothelioma & Asbestosis: Occupations

Group	Mesothelioma, HR (95% CI)	Asbestosis, HR (95% Cl)
Construction trades	2.6 (2.2-3.0)	3.1 (2.6-3.6)
Construction electricians and repairmen	2.5 (1.7-3.6)	2.9 (2.1-4.1)
Foremen	4.8 (2.8-8.1)	1.6 (0.4-6.3)
Carpenters	2.2 (1.5-3.1)	1.7 (1.2-2.4)
Plasterers	2.9 (1.4-6.2)	4.6 (2.7-7.7)
Insulators	25.2 (14.9-42.8)	23.4 (13.6-40.3)
Pipe fitting and plumbing	7.3 (5.6-9.6)	7.9 (6.2-10.0)
Machining and related	1.2 (1.0-1.5)	1.1 (0.9-1.4)
Boilermakers	5.0 (2.4-10.5)	8.4 (5.3-13.2)
Other occupations		
Industrial, farm and construction machinery mechanics and repairmen	2.4 (1.7-3.2)	1.5 (1.1-2.1)
Stationary engine and utilities equipment operating and related occupations, n.e.c.	3.9 (2.2-6.7)	1.4 (0.7-2.9)

Towards a cancer-free workplace

Mesothelioma & Asbestosis: Industries

Group	Mesothelioma, HR (95% CI)	Asbestosis, HR (95% Cl)
Mines (including Milling), Quarries and Oil Wells	1.6 (1.1-2.5)	1.0 (0.6-1.6)
Non-Metal Mines	15.3 (7.9-29.5)	<5 cases
Manufacturing Industries	1.1 (1.0-1.3)	1.0 (0.9-1.1)
Non-Metallic Mineral Products	2.0 (1.4-3.0)	2.2 (1.5-3.2)
Construction	1.9 (1.6-2.2)	2.3 (2.0-2.7)
General Contractors	1.6 (1.2-2.1)	1.1 (0.8-1.5)
Special-Trade Contractors	1.9 (1.6-2.4)	2.8 (2.4-3.4)
Community, Business & Personal Service Industries	0.9 (0.7-1.1)	0.8 (0.7-1.0)
Education and Related Services	2.1 (1.5-2.8)	1.5 (1.1-1.9)
		O()

Time Stratified Results for Mesothelioma

34

Results – Silicosis

Case def'n: 2+ OHIP billing records during follow-up

Occupation Group	Cases (Workers)	HR (95% CI)
Mining and quarrying	26 (10,012)	15.44 (10.2-23.4)
Drilling and blasting	9 (2 <i>,</i> 585)	15.38 (7.9-30.1)
Foremen	5 (655)	28.46 (11.7-69.4)
Processing	19 (67,221)	2.09 (1.3-3.4)
Chemicals, petroleum, rubber, plastic and related materials processing	8 (35,118)	1.88 (0.9-3.8)
Industry Group	Cases (Workers)	HR (95% CI)
Mines (including milling)	29 (18,126)	9.3 (6.2-13.8)
Metal mines	22 (10,927)	9.6 (6.2-15.1)
Construction	29 (175,633)	1.2 (0.8-1.8)
Primary metals	17 (35 <i>,</i> 499)	2.6 (1.6-4.2)
Non-metallic mineral products	7 (20,563)	2.1 (1.0-4.5)

CAREX Canada: Job-Exposure Matrices

- CAREX Canada: Prevalence and level of exposure
 - 328 industries & 520 occupations

National Occupational Classification System 2006 (NOCS)

North	Prev/Lev	Occ 1	Occ 2		Occ 519	Осс 520
American	Ind 1	0.2/L	1.0/L			
Industrial	Ind 2			•••	0.5/H	0.1/M
System 2002		•••	•••			
(NAICS)	Ind 327	0.6/M		•••	1.0/L	1.0/L
	Ind 328	0.5/H	1.0/L		0.8/L	

- CAREX codes translated to SIC & CCDO codes used in ODSS
- Approach now being refined using crystalline silica & silicosis

Exploratory Analyses – Silica CAREX JEM

Exposure to Silica	Silicosis Cases (Workers)	HR (95% CI)
Low vs Unexposed	21 (128,786)	1.26 (0.80-1.99)
Moderate vs Unexposed	4 (25,897)	1.19 (0.44-3.20)
High vs Unexposed	41 (159,926)	1.89 (1.34-2.67)

Exposure to Silica	Silicosis Cases (Workers)	HR (95% CI)
<5% vs Unexposed	8 (83,879)	0.67 (0.33-1.37)
5- <10% vs Unexposed	15 (78,736)	1.46 (0.86-2.48)
10- <50% vs Unexposed	17 (84,453)	1.57 (0.95-2.61)
50-100% vs Unexposed	26 (67,541)	2.99 (1.97-4.53)

Asthma

 15% of cases in industrialized countries attributable to workplace exposures and there are 100's of suspected or causative agents

Contact Dermatitis

• Contact dermatitis (irritant and allergic) is one of the most common work-related diseases in Canada

Asthma

PAINTING/DECORATING, EXCEPT CONSTRUCTION HR 1.67 (95% CI 1.23-2.28)

High isocyanate exposure vs. unexposed HR 1.68 (1.24-2.29)

BAKING/CONFECTIONARY MAKING HR 1.60 (95% CI 1.22-2.09)

High flour dust exposure vs. unexposed HR 1.60 (1.23-2.09)

CABINET/WOOD FURNITURE MAKERS HR 1.33 (95% CI 0.96-1.83)

DIAGNOSTIC/THERAPEUTIC SERVICE INDUSTRY HR 1.41 (95% CI 1.03-1.94)

SHIPPING/RECEIVING CLERKS HR 1.23 (95% CI 1.03-1.43)

JANITORS, CHARWORKERS AND CLEANERS HR 1.08 (95% CI 0.98-1.18) M 1.17 (95% CI 1.02-1.35)

Towards a cancer-free workplace

Contact Dermatitis

Food & Beverage HR 1.12 (1.03-1.21)

Bakery Products HR 1.35 (1.14-1.62)

Fruit & Vegetable HR 1.31 (1.02-1.67)

PERSONAL SERVICE HR 1.09 (1.01-1.18)

Barbers & Hairdressers HR 1.49 (1.00-2.20)

Metal Machining HR 1.28 (1.14-1.43)

Furniture & Fixture HR 1.21 (1.06-1.39)

MEDICINE/HEALTH HR 1.14 (1.01-1.29)

Towards a cancer-free workplace

Conclusions

- Preventing occupational disease has become a priority not only in Ontario, but across Canada
- Surveillance is challenging because recognition is very poor and electronic health records lack occupational information
- We have made good progress in occupational disease surveillance and new models, such as the ODSS, are very promising

Moving the Agenda Forward

- Occupational disease prevention needs to remain a priority
- More data is needed to drive prevention, especially in the area of hazard/exposure surveillance
- We need more prevention research to identify the most effective ways to reduce exposure
 - We need more studies with a strong evaluation component

ODSS Project Team

Jill MacLeod, MPH Epidemiologist

Mamadou Dakouo, MSc Biostatistician

Chloe Logar-Henderson, MPH Epidemiologist

Sharara Shakik, MPH Epidemiologist

Nathan De Bono, Ph.D. Epidemiologist & Scientific Lead

Nelson Chong Institute for Clinical Evaluative Sciences, Data Linkage Expert

Kate Jardine, MSc OCRC Communications Lead

Hunter Warden, MPH Epidemiologist

Xiaoke Zeng, MPH Ph.D. Student

Thank You!

Public Health Agency of Canada Agence de la santé publique du Canada

Ministry of HEALTH AND LONG-TERM CARE

 Thanks to the many OCRC staff and students and our scientific collaborators from across the country who contributed to the research presented here!

http://occupationalcancer.ca

