Environmental sources of polybrominated diphenyl ether (PBDE) and organophosphorus (OP) flame retardants and risk of breast cancer in young women: Early results from a population-based Ontario study

Occupational and Environmental Health (OEH) seminar series

Shelley A. Harris, PhD
Scientist, Prevention and Cancer Control
& Occupational Cancer Research Centre
& Associate Professor, Dalla Lana School of Public Health,
University of Toronto

January 26, 2018

Review article

A review of the role of emerging environmental contaminants in the development of breast cancer in women

Shabana Sidiqi* 1, 5, Carlton Kubwabo 2, Shelley A. Harris 4, 6, 6

1 Prevention and Cancer Control, Cancer Care Ontario, 410 University Avenue, Toronto, ON, Canada
2 Environmental and Radiation Health Sciences Division, Health Canada, 30 Colonel By Drive, Ottawa, ON, Canada
3 Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, ON, Canada
4 Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada

- alkylphenols (APs)
- bisphenol A (BPA)
- parabens
- perfluoroalkyl substances (PFASs)
- phthalates
- synthetic musks
- triclosan
- polybrominated diphenyl ethers (PBDEs)
Polybrominated Diphenyl Ethers (PBDEs)

- Class of brominated flame retardants
- Used in a wide range of industrial and consumer products since 1970’s to meet flammability standards for:
 - textiles, insulation, polyurethane foam, carpets, furniture, plastics, electrical appliances/equipment
- PBDEs can be released from products during manufacture, while in use and after disposal

Sources of Flame Retardants

Why focus on PBDEs?

- Ubiquitous environmental pollutants
 - Increasing levels in the environment, especially North America
 - Have contaminated the food chain
 - High concentrations found in fish (salmon, trout, mackerel)
 - Premenopausal breast cancer in women associated with consumption of Great Lakes fish (McElroy, 2004)
- Endocrine disruptors
 - Metabolites act as pseudoestrogens
 - Classified as a “possible human carcinogen” by U.S. Environmental Protection Agency
- Exposure through dust, air, dermal contact and diet

PBDEs in human blood, milk, tissue (ng/g lipid)

2003-2008 stopped new use in EU & North America

“With obvious advantages like environmental friendliness and safety, organophosphorus flame retardant is gradually substituting for halogen flame retardant. ...In 2013 alone, the market volume of organophosphorus flame retardant reached some 620 kt, accounting for 30% of the global total.”

Exposure to Emerging Environmental Contaminants and Risk of Breast Cancer in Young Women: A Case-Control Study using Biomarkers of Exposure. CCSRI, $842,000 2011-2017

http://oehs.ca/
OEHS – Case Control Study

Primary Objective:

1. To evaluate the associations between lipid-adjusted serum concentrations of PBDEs and the risk of incident breast cancer in young women, aged 18-44 years.

Secondary Objectives:

1. To evaluate the relative contribution of different sources to lipid-adjusted PBDE serum concentrations:
 - Dietary exposures (fish consumption, meat, poultry, dairy), environmental (household) and occupational exposures

2. To collect and store serum and morning urine samples for future biomarker studies of exposure, susceptibility or effect and the risk of breast cancer in premenopausal women (ie: Biobank)
OEHS – Case Control Study

- Cases: n=350
 - Population-based: identified from the Ontario Cancer Registry (OCR) 2013-2015
 - Aged 18-44 years
 - Pathology-confirmed primary breast cancer diagnosis
- Controls: n=350
 - Population-based: identified using random-digit dialing (RDD) by the Institute for Social Research (ISR) at York University
 - Frequency-matched within 5-year age groups

A comprehensive approach to exposure assessment
OEHS – Data Collection

Two web-based questionnaires:

1. **Environmental Questionnaire**
 - Lifetime residential history: age / type of home, type of heating, ventilation, renovations
 - Cleaning: frequency of vacuuming, dusting, carpet cleaning
 - Furniture types: age / type of mattress, presence of foam pillows, other foam furniture
 - Occupational history: computer repair, recycling facilities, hours spent on a computer
 - Transportation: vehicle use, airplane travel
 - A typical day: hours spent on work/home/travel/sleep

2. **Diet Questionnaire**
Two web-based questionnaires:

1. **Environmental Questionnaire**
2. **Diet Questionnaire**
 - Modified full-diet Block 2005 FFQ to estimate usual food and supplement intake over 12 months about 2 years ago
 - Modifications geared towards improved PBDE assessment:
 - Reviewed all animal foods
 - Modified questions and nutrient database to distinguish meat and chicken or turkey sources, oily fish, and fish oil supplements

2. **Diet Questionnaire**: examples of modifications
 - New items and sub-questions added
 1. **Fish**: ready-to-eat vs. white/lean vs. dark/oily
 - Different fish types (i.e. wild vs farmed)
 2. **Meat products and liver**: poultry vs. animal
 - Different types of products (i.e. hot dogs, white vs. dark chicken, fried liver vs. paté)
 3. **Fish oil supplements vs. non-fish Omega3s**
 - 8 different types of fish oil supplements
Search Strategy:

- Medline 1996 – April 2015
- MeSH terms and keywords: (flame retardants/an [Analysis]; OR halogenated diphenyl ethers/an, ch [Analysis, Chemistry]; OR hydrocarbons, brominated/an, ch [Analysis, Chemistry]; OR pbde) AND (food: OR diet: OR dietary supplements OR fish oils)
Results: PBDE database

PBDE Levels in Selected Food Groups

- BDE-17
- BDE-28
- BDE-47
- BDE-66
- BDE-85
- BDE-99
- BDE-100
- BDE-153
- BDE-183
- BDE-209
PBDE Levels in Dark or Oily Fish

Results: PBDE database

Figure Σ11Polybrominated diphenyl ether (PBDE) in the top 10 contaminated groups and additional animal groups (pg/g wet weight).
PBDE Levels in Selected Dietary Supplements

![Graph showing PBDE levels in different dietary supplements.]

OEHS – Data Collection

3. Biological sample collection
 - After consent, cases and controls were mailed a BioKit containing:
 1. Test tubes, pipettes and containers for sample collection
 2. Participant instructions, a Google maps print out of the 5 closest GDML locations to their home
 3. A set of laboratory instructions

 - Collect **60mL of fasting blood** and **90mL of urine**
 - Location: **Gamma Dynacare Medical Laboratory (GDML)**
OEHS BioKit

- GDCML: Collection, processing, analysis, shipment, short term storage
Challenges Associated with Sample Preparation for the Analysis of PBDEs in Human Serum

Salahaa A. Pharaoh
Prevention and Cancer Control, Cancer Care Ontario, Toronto, ON, Canada M5G 2L7
Paula R. Knapton and Caroline Keywood
Environmental and Population Health Sciences Directorate, Health Canada, Ottawa, ON, Canada K1A 9S9
Shirley Rabin
Prevention and Cancer Control, Cancer Care Ontario, Toronto, ON, Canada M5G 2L7

1) GC/electron ionization-tandem MS method develop to quantify 8 PBDE congeners in human serum: BDE-28 BDE-47 BDE-85 BDE-99 BDE-100 BDE-153 BDE-154 BDE-183

2) Subset of 120 subjects (60 cases and 60 age-matched controls) assessed for OPFR exposures via urinary metabolites: BDCIPP, DPHP, BBOEP, DoCP & DpCP, TCIPPOH, BCIPP, BCEP, Desbutyl TBOEP

Results: demographic and health-related characteristics of OEHS participants

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cases (n=305)</th>
<th>Controls (n=144)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>39.70 (4.41)</td>
<td>38.33 (4.54)</td>
</tr>
<tr>
<td>20 years and younger</td>
<td>0 (0.0)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>>20 to 30 years</td>
<td>12 (3.93)</td>
<td>6 (4.17)</td>
</tr>
<tr>
<td>>30 to 40 years</td>
<td>130 (42.62)</td>
<td>85 (59.03)</td>
</tr>
<tr>
<td>>40 to 45 years</td>
<td>163 (53.44)</td>
<td>52 (36.11)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elementary School</td>
<td>0 (0.0)</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>High School</td>
<td>33 (10.8)</td>
<td>8 (5.6)</td>
</tr>
<tr>
<td>Trade or technical school</td>
<td>11 (3.6)</td>
<td>2 (1.4)</td>
</tr>
<tr>
<td>Non-university diploma</td>
<td>71 (23.3)</td>
<td>47 (32.6)</td>
</tr>
<tr>
<td>University, below Bachelor’s degree</td>
<td>6 (2.0)</td>
<td>6 (4.2)</td>
</tr>
<tr>
<td>Bachelor’s degree</td>
<td>123 (40.3)</td>
<td>55 (38.2)</td>
</tr>
<tr>
<td>Graduate degree</td>
<td>61 (20.0)</td>
<td>25 (17.4)</td>
</tr>
<tr>
<td>Marital Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married or living with partner</td>
<td>246 (80.7)</td>
<td>120 (83.3)</td>
</tr>
<tr>
<td>Divorced</td>
<td>10 (3.3)</td>
<td>6 (4.2)</td>
</tr>
<tr>
<td>Widowed</td>
<td>1 (0.3)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Separated</td>
<td>6 (2.0)</td>
<td>4 (2.8)</td>
</tr>
<tr>
<td>Single or never married</td>
<td>42 (13.8)</td>
<td>14 (9.7)</td>
</tr>
</tbody>
</table>
Associations with selected characteristics, all models adjusted for age

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Cases (n=305)</th>
<th>Controls (n=144)</th>
<th>OR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass index (BMI) - 2 years ago</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>24.73</td>
<td>26.29</td>
<td>0.95 (0.92, 0.98)</td>
</tr>
<tr>
<td>Normal: 18.5 to <25</td>
<td>181</td>
<td>66</td>
<td>1.00</td>
</tr>
<tr>
<td>Below 18.5</td>
<td>15</td>
<td>2</td>
<td>2.88 (0.63, 13.04)</td>
</tr>
<tr>
<td>35 to <30</td>
<td>70</td>
<td>41</td>
<td>0.61 (0.37, 0.98)</td>
</tr>
<tr>
<td>30 and above</td>
<td>39</td>
<td>34</td>
<td>0.40 (0.23, 0.69)</td>
</tr>
<tr>
<td>Smoking status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never (<100 cigarettes)</td>
<td>197</td>
<td>101</td>
<td>1.00</td>
</tr>
<tr>
<td>Ever</td>
<td>106</td>
<td>38</td>
<td>1.38 (0.88, 2.15)</td>
</tr>
<tr>
<td>Dietary alcohol intake (grams)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean (SD)</td>
<td>9.08</td>
<td>5.86</td>
<td>1.02 (1.00, 1.04)</td>
</tr>
<tr>
<td>≤Q1</td>
<td>60</td>
<td>35</td>
<td>1.00</td>
</tr>
<tr>
<td>Q1 to Q2</td>
<td>60</td>
<td>35</td>
<td>1.11 (0.61, 2.03)</td>
</tr>
<tr>
<td>Q2 to Q3</td>
<td>70</td>
<td>34</td>
<td>1.22 (0.68, 2.20)</td>
</tr>
<tr>
<td>Q3≥</td>
<td>105</td>
<td>34</td>
<td>1.81 (1.02, 3.22)</td>
</tr>
<tr>
<td>Parity: number of live births</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>92</td>
<td>20</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>52</td>
<td>18</td>
<td>0.47 (0.22, 1.00)</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>66</td>
<td>0.27 (0.14, 0.50)</td>
</tr>
<tr>
<td>3 or more</td>
<td>50</td>
<td>40</td>
<td>0.18 (0.09, 0.37)</td>
</tr>
</tbody>
</table>

OEHS Data Collection, Part 4

HOME Study - Diamond Laboratory, University of Toronto/Environment Canada

NEW FUNDING:

Monitoring and modeling of residential indoor semi volatile organic compounds. Harris, S.A. (PI) and Diamond, M. (PI)

Health Canada, Water, Air and Climate Change Bureau, CARA project funds.

2014 - 2017, Amount: $497,100

Monitoring organophosphorus flame retardants in Canadian homes.

Harris, S.A., (PI) Diamond, M. (PI) and Jantunen, L. (Co-I)

Health Canada, CMP Monitoring and Surveillance Fund.

2014 to 2017, Amount: $100,000
SVOCs?

- SVOCs include: halogenated (bromine and chlorine) organic compounds, phthalates, and phosphorus-containing (OP) flame retardants (FRs)
- The concentration of SVOCs in indoor air is influenced by a number of poorly characterized emission sources:
 - Personal care products
 - Building and decorator materials (wallpaper, flooring type)
 - Electronic equipment, furniture
 - Indoor sinks (carpets, dust)

HOME Study Objectives

- Evaluate association between SVOCs, as measured in a variety of media (air, dust, hand wipes...)
 - serum PBDE levels of individuals residing in the household
 - urinary OPFRs
- Investigate whether housing characteristics are predictive of measured SVOCs
Methods OEHS Home Study

Figure 2. Equipment set-up in a participant’s home

Figure 1. Study process and timeline

Methods and Study

- Equipment set-up:
 - DustTraks
 - HOBO
 - PUF Disk
 - PDMS

- Environmental sample collection:
 - Dust collection
 - Hand wipes
 - Window wipes
 - Product wipes
 - Home measurements
 - Equipment pick-up

- No cleaning for 1 week before Visit 2

OPFRs > NBFRs & PBDEs by ~2-3 orders of magnitude (PUF passive)

BROMINATED AND ORGANOPHOSPHATE FLAME RETARDANTS (BFRS AND OPES) IN HOUSEHOLD AIR IN ONTARIO, CANADA

Methods
- Yang et al., BFR 2016
- Concentration (ng/m³)

Sample Collection
- DustTraks
- HOBO
- PUF Disk
- PDMS

Environmental Sample Collection
- Dust collection
- Hand wipes
- Window wipes
- Product wipes
- Home measurements
- Equipment pick-up

Results
- OPFRs > NBFRs & PBDEs by ~2-3 orders of magnitude (PUF passive)

References
- Yang et al., BFR 2016
Dust Concentrations

- OPFRs ~ 10 times higher than NBFRs & PBDEs
- OPFRs Handheld > non-handheld
- BFRs Handheld ≈ Non-handheld
- Handheld newer than non-handheld? 38
Hands vs Handheld Devices

- Hands = Handheld devices
- Handheld devices as sources to hands or vice versa?

Exposome Globe BFRs, Yang et al., in prep

Cold tone/blueish ribbons represent NBFRs, and warm tone/redish ribbons represent PBDEs.
Conclusions

• associations for PBDE exposures and premenopausal breast cancer risk
• elevated breast cancer risk observed in relation to urinary concentrations of OP flame retardants
• diet may be an important contributor to serum PBDE concentrations
• OPFRs more frequently detected and in higher concentrations that PBDE congeners in biological samples
• OPFR concentrations far higher in indoor environments than PBDEs

OEHS Future Directions

• Diet analysis
 – PBDEs in foods/supplements
 – Organic foods
• OEHS Home Study – predictive modelling of serum (PBDEs) and urinary (OPs) biomarkers
• Additional analyses funded:
 – Multimedia Exposure to Replacement Chemicals of Emerging Concern and Selected CMP3 Chemicals (Awarded); PI: Kubwabo, C, Mandy Fisher (Co-PI), Dr. Pat Rasmussen (Co-PI), Harris, S.A. (Co-I) et al. Chemical Management Plan, Health Canada 2017-2021, Amount: $600,000.
Investigators and Collaborators

OEHS:

- **Shelley Harris** (PI), Beatrice Boucher, Cariton Kubwabo, Michelle Cotterchio, Julia Knight, Len Ritter, Paul Villeneuve
- **Grad Student/Post Doc/RAs:**
 - Linda Kachuri, Lidija Latifovic, Gil Valencia, Brooke Filsinger

Health Canada Biomonitoring Team:

- Cariton Kubwabo, Shabana Siddique
- Kaela Lalonde, Ivana Kosarac

PBDE database team:

- Beatrice Boucher, Julie Ennis, Dina Tsirlin

OEHS Home Study Team:

- Miriam Diamond, Liisa Jantunen, Congqiao Yang, Jospeh Okeme, Dina Tsirlin, Lidija Latofivic, Regina De La Campa; Hung You, Ryan Kulka, Bruce Fraser