

SOCcer: Automatic coding of free-text job descriptions to standardized occupation codes

Daniel E. Russ¹, Kwan-Yuet Ho¹, Calvin A. Johnson¹, and Melissa C. Friesen²

¹Division of Computational Bioscience, Center for Information Technology, NIH ²Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH

Overview

- Occupation information
 - Use and collection
 - Standardized classification systems
- SOCcer
 - Framework
 - Performance measures
 - Future advancements and new directions

Occupation Information

Finance, credit, purchase preferences

Medical diagnosis

Surveillance to improve health policy and identify priorities

Primary or confounding factor in **epidemiologic studies**

What is your job title?

- Many ways of describing an occupation
- Different level of detail
- Changes depending on who is asking

Standardized Occupation Categories
Mechanical Engineer
Misc. Engineer
Physical Scientist
Chief Executive

Standard Occupational Codes

US SOC 2010

Major group
 Minor Group
 Broad Group
 Detailed Occupation
 19-0000 Life, Physical, and Social Science Occupations
 19-1000 Life Scientists
 Medical Scientists
 19-1041 Epidemiologists
 19-1042 Medical Scientists, Except Epidemiologists

Major group

29-0000 Healthcare Practitioners and Technical
Occupations

Minor Group

29-1000 Health Diagnosing and Treating Practitioners

29-1060 Physicians and Surgeons
Detailed Occupation

29-1062 Family and General Practitioners

29-1063 General Internist

29-1069 Physicians and Surgeons, All Other

Occupation in population-based studies

- Current job, longest job, usual job, all jobs
- Wide variety of occupations, industries
- Open-ended questions:
 - What was your job title?
 - What were your main tasks and activities in this job?
 - Who was your employer?
 - What services were provided or what products were made by your employer?
 - Start year/stop year
- Coded to standardized occupation and industry classification systems: SOC and SIC

Coding: time-consuming, modestly reliable

- Manual process
- Based on limited information
- No gold standard
- Agreement between 2 coders is poor/moderate (Koeman et al. 2013)
 - 5-digit level ISCO68 agreement: 36%
 - 3-digit level ISCO68 agreement: 55%
- Preferably independent assignments by 2 coders, resolve discordant assignments
- Costly in large-scale studies

Multiple recent efforts to automate

- NIOSH: http://wwwn.cdc.gov/niosh-nioccs/
- U. Montreal: <u>www.caps-canada.ca</u>
- Burstyn et al. (2014) Beyond crosswalks: reliability of exposure assessment following automated coding of free-text job descriptions for occupational epidemiology.
- Patel et al. (2012) Performance of automated and manual coding systems for occupational data: A case study of historical records
- Batch vs. job-by-job.
- Most require the user to make the final determination from multiple choices or do not provide an assignment when low confidence/no match.
- Different coding schemes.

Objective

- Develop a computer algorithm to assign standardized occupation classifications (SOC) based on free-text responses.
 - Reduce but not replace expert coding

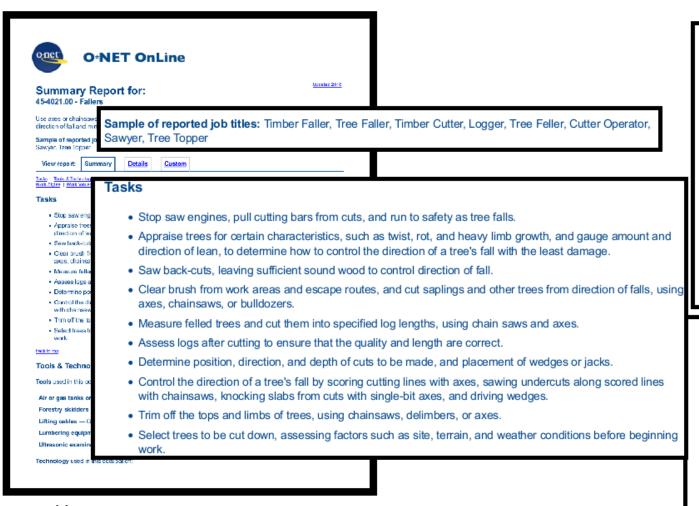
- Cross-NIH institute collaboration with Division of Computational Bioscience
 - Expertise in natural language processing and classification

Our framework

- Adaptable system
 - [Initially] Code to US SOC 2010
 - Electronic knowledge base of job titles and tasks for each SOC (O*NET)
 - [Future] Other classification systems
- Assumption: Better matches by using multiple aspects of job description
 - Job title, tasks, coded industry


Standardized Occupation Coding for Computer-assisted Epidemiological Research

http://soccer.nci.nih.gov



Knowledge Base Development

Production database of job titles Crosswalk information Data Sources U.S. Census Occupational Index

O*NET for US SOC 2010

http://www.onetonline.org

NIH Intramural Research Program Our Research Changes Lives

Work Activities

Performing General Phy arms and legs and movin materials.

Controlling Machines at machines or processes (r

Handling and Moving O materials, and manipulati back to top

Work Context

Outdoors, Exposed to V

Wear Common Protection Protection, Hard Hats, of

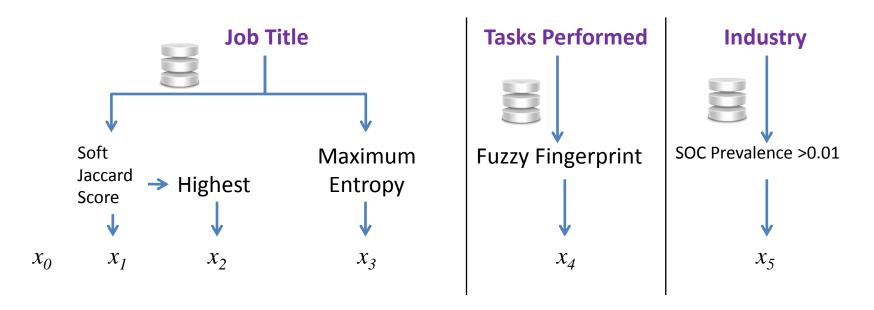
Knowledge

No knowledge met the minimu

back to top

Skills

Operation and Control — Con


back to top

Abilities

Reaction Time — The ability to when it appears.

Multilimb Coordination — The leg and one arm) while sitting, s body is in motion.

Overview of SOCcer


Logistic Regression to obtain score

$$\ln\left(\frac{p}{1-p}\right) = f(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5$$

SOCcer score and SOC code assignment

Algorithm score:

probability that an expert coder would assign that code

SOCcer output: Top 10 scoring SOCs

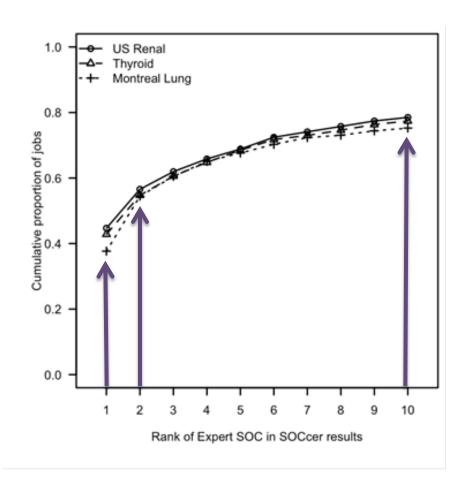
SOC₁ – Assign to job description? SOC₂ SOC₃ ...

SOC₁₀

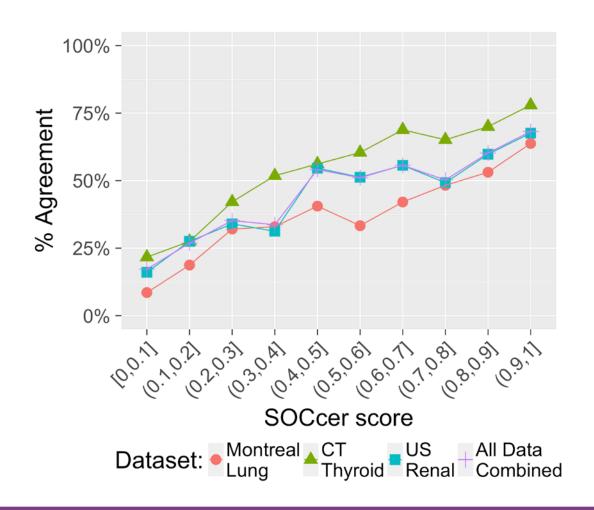
SOCcer's performance

Validity assessments at 6-digit level:

"Gold standard": Consensus expert SOC assignment

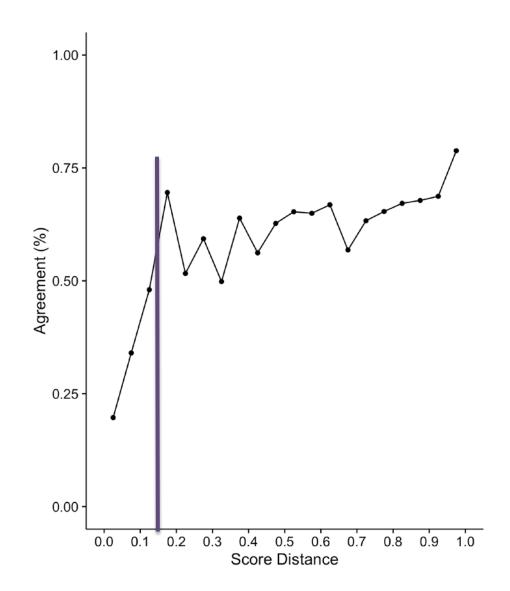

Vs. Highest scoring SOC-2010 code from SOCcer

Overall agreement


Study	# Jobs	Percent Agreement at SOC Level				Median SOCcer score
		2- Digit	3- Digit	5- Digit	6- Digit	(IQR)
US Renal	11,943	77	64	52	45	0.46 (0.24-0.77)
CT Thyroid	1,942	73	59	50	44	0.22 (0.08-0.51)
Montreal Lung	829	74	56	46	38	0.45 (0.22-0.79)
Combined	14,519	76	63	51	41	0.44 (0.23-0.75)

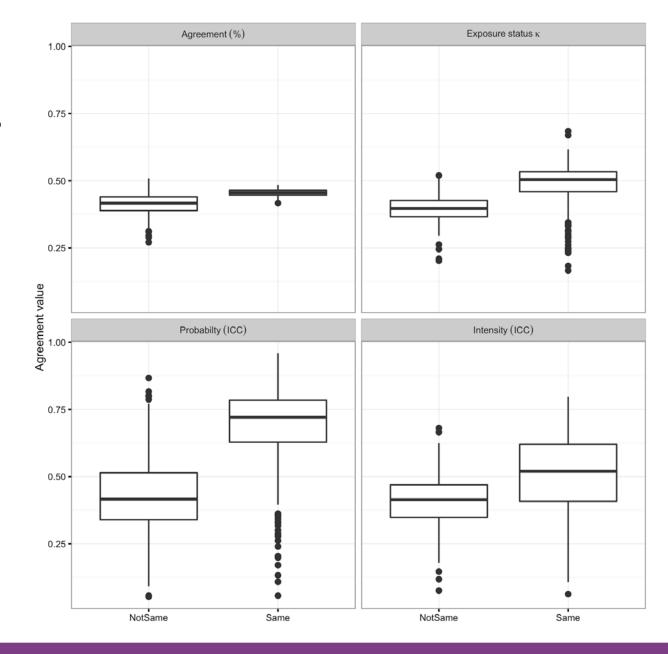
	Coder vs. Coder	Computer vs. Coders				
	Koeman	Burstyn	Patel (NIOSH)	US Renal		
- 3-digit	55%	31-85%	63%	63%		
- 5-digit	36%	9-72%	52%	51%		

Did the expert assigned code appear in any of the top 10 codes from SOCcer?

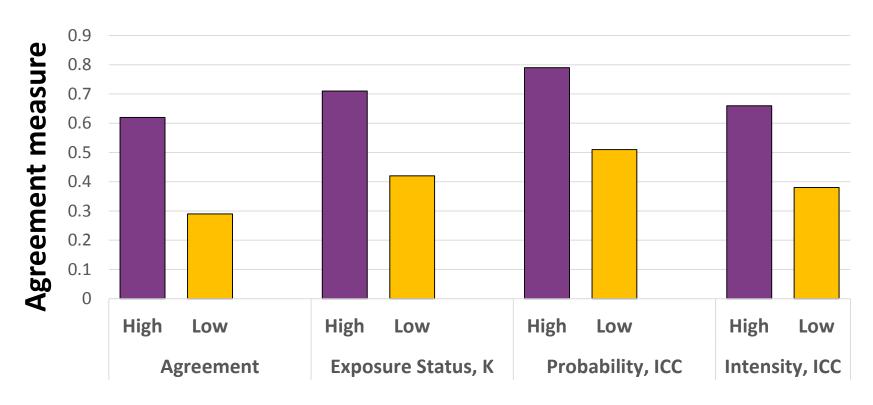


Agreement by score

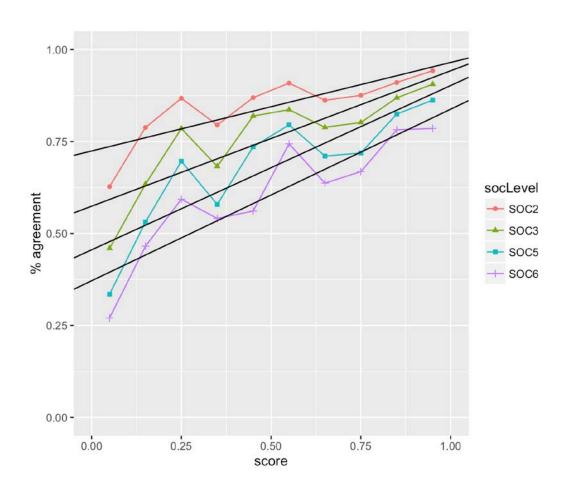
Agreement by score distance to 2nd ranked SOC code:


Score distance = score₁ - score₂

Do the mis-assignments matter?

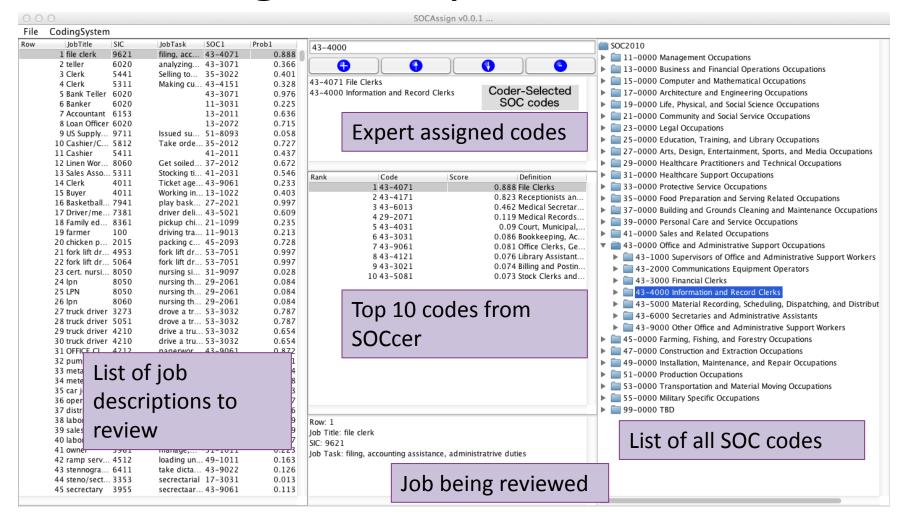

- Generic codes may be difficult to correctly code, but may result in same exposure estimate (e.g., welder)
- Linked expert & highest scoring SOC code to CANJEM
- Compared agreement in exposure estimates
 - Generally similar patterns to SOC code
 - Median kappa on exposed/not exposed: 0.56 (IQR 0.52-0.58)
 - Median ICC on continuous probability metric: 0.66 (IQR 0.58-0.73)
 - Median ICC on continuous probability metric: 0.50 (IQR 0.44-0.56)

Did the top 2 ranked SOC codes assign the same exposure?


Agreement by confidence in assignment

HIGH: score ≥0.3 <u>and</u> score₁₋₂ ≥0.15

Confidence by metric


Agreement at varying hierarchy levels

Main findings

- Can reduce expert coding task
- Detailed coding not always possible (data quality)
- 6-digit level
 - Manual coding necessary for nontrivial # of jobs
 - Score and JEM-based metrics to prioritize expert assessment
- 3-digit level
 - Excellent overall agreement and at scores ≥0.25

SOCAssign: Companion Software

Preview of future advancements

SOCcer 1.1

- Expand training data to include job descriptions from epidemiologic studies and retrain algorithm
- Increases overall 6-digit agreement to >50%
- March-April 2017

SOCcer 2.0

- Add and refine classifiers and add training data
- Increases overall 6-digit agreement to ~60%
- Late 2017
- Consider more than one plausible code?

Expansion to other systems?

Requires training data in target system

- Previously coded job descriptions
- O*NET equivalent data source
- Crosswalk to US SOC 2010

Canadian system?

- Current and previous versions
- English & French?

Thank you

- Expert coders
 - Susan Viet, Pabitra Josse, Sarah Locke
- CANJEM
 - Jerome Lavoue, Thomas Remen
- Epidemiologic studies
 - Connecticut Thyroid Study
 - Montreal Lung Cancer Study
 - NCI-SEER NHL Study
 - New England Bladder Cancer Study
 - US Renal Cell Cancer Study